
Towards Cognitive Support in Knowledge Engineering: An
Adoption-Centred Customization Framework for Visual Interfaces

by

Neil A. Ernst
B.Sc., University of Victoria, 2001

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of

MASTER OFSCIENCE

in the Department of Computer Science

We accept this thesis as conforming
to the required standard

Dr. Margaret-Anne Storey (Department of Computer Science)

Dr. Hausi Müller, Department Member (Department of Computer Science)

Dr. Yvonne Coady, Department Member (Department of Computer Science)

Dr. Francis Lau, External Examiner (School of Health Information Science)

c© Neil A. Ernst, 2004

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part by
photocopy or other means, without the permission of the author.

Supervisor: Dr. Margaret-Anne Storey

ABSTRACT

Constructing large knowledge models is a cognitively challenging process. In order to

assist people working with these models and tools, this thesis proposes considering the

tools used in light of the cognitive support they provide. Cognitive support describes those

elements of a tool which aid human reasoning and understanding.

This thesis examines the use of advanced visual interfaces to support modelers, and

compare some existing solutions to identify commonalities. For many problems, however,

I found that such commonalities do not exist, and consequently, tools fail to be adopted

because they do not address user needs. To address this, I propose and implement a cus-

tomizable visualization framework (CVF) which allows domain experts to tailor a tool to

their needs. Preliminary validation of this result revealed that while this approach has some

promise for future cognitive support tools in this area, more work is needed analyzing tasks

and requirements for working with large knowledge models.

iii

Examiners:

Dr. Margaret-Anne Storey (Department of Computer Science)

Dr. Hausi Müller, Department Member (Department of Computer Science)

Dr. Yvonne Coady, Department Member (Department of Computer Science)

Dr. Francis Lau, External Examiner (School of Health Information Science)

Table of Contents
Abstract ii

Table of Contents iv

List of Tables viii

List of Figures ix

Acknowledgement xi

Dedication xii

1 Introduction 1

1.1 Knowledge engineering. 1

1.2 The growth of intelligent systems. 3

1.3 Cognitive support enhances knowledge engineering tools. 5

1.4 Software customization: a possible solution?. 8

1.5 Outline . 9

2 Background 10

2.1 Knowledge engineering. 10

2.1.1 Knowledge representation and ontologies. 10

2.1.1.1 Ontologies. 12

2.1.2 The Semantic Web initiative. 13

2.1.3 Building the semantic web. 14

2.2 Graphical knowledge engineering. 14

2.2.1 Prot́eǵe .16

2.2.2 More recent tools. 17

2.2.2.1 IsaViz . 18

Table of Contents v

2.2.2.2 Ontorama. 20

2.2.2.3 Ontobroker/Kaon. 20

2.2.3 Advanced visual interfaces in knowledge engineering. 20

2.3 Adoption and innovation diffusion. 21

2.4 Customization and domain models. 23

2.4.1 Who is involved in the customization process?. 24

2.4.2 Customization approaches. 24

2.4.2.1 Model-driven architectures. 25

2.4.2.2 Script-based environments. 26

2.5 Chapter summary. .26

3 Cognitive support for knowledge engineering 28

3.1 Determining where cognitive support can help. 28

3.1.1 Impetus for the research. 28

3.1.2 Requirements gathering. 29

3.1.2.1 User survey. 29

3.1.2.2 Contextual inquiries. 30

3.1.3 Background review. 31

3.2 Knowledge engineering tasks requiring cognitive support. 34

3.2.1 Summary. .38

3.3 Approaches to cognitive support. 40

3.3.1 Prot́eǵe core .40

3.3.2 Instance Tree widget. 41

3.3.3 Ontoviz. .41

3.3.4 TGVizTab .42

3.3.5 Jambalaya. .43

3.3.6 Summary. .44

3.4 Evaluating cognitive support using design goals. 45

Table of Contents vi

3.4.1 Trade-offs in the design process. 45

3.4.2 Five important design goals. 47

3.4.3 Usability .48

3.4.4 Learnability .48

3.4.5 Expressivity .49

3.4.6 Scalability and responsiveness. 49

3.4.7 Customizability and extensibility. 50

3.5 Summary. .51

4 Implementing and evaluating customization support in Jambalaya 53

4.1 Modeling Jambalaya. .53

4.1.1 Customization in Jambalaya. 54

4.1.2 Step 1. Outline the domain and scope of the ontology. 55

4.1.3 Step 2. Consider other ontologies. 56

4.1.4 Step 3. Enumerate important terms in the ontology. 56

4.1.5 Step 4. Define the classes and the class hierarchy. 57

4.1.5.1 Actions . 58

4.1.5.2 Layouts. 58

4.1.5.3 Scripts. 59

4.1.5.4 View Elements. 59

4.1.5.5 Interface Elements. 60

4.1.5.6 Not included or future work. 60

4.1.5.7 User concepts. 61

4.1.6 Step 5. Define class properties. 61

4.1.7 The CVF ontology: summary. 62

4.2 Implementation. .62

4.2.1 Creating the ontology. 62

4.2.2 Integration with Jambalaya. 64

Table of Contents vii

4.3 Interacting with the CVF. 65

4.4 Results of the customization. 67

4.5 Validating the Prototype and Approach. 69

4.6 Selection of validation technique. 70

4.7 Validation technique: implementation report. 71

4.8 Validation technique: experience report. 72

4.8.1 Initial contact and questionnaire. 72

4.8.2 Pilot User .73

4.8.3 User 1 .74

4.8.4 User 2 .74

4.8.5 User 3 .75

4.8.6 Discussion and analysis. 76

4.9 Summary. .77

5 Conclusions 78

5.1 The use of customization. 78

5.2 Enabling customization vs. improving usability. 80

5.3 Why knowledge engineering should care about adoption. 82

5.4 Cognitive support needs consideration. 83

5.5 Contributions. .84

5.6 Future research directions. 85

5.6.1 Critical assessment of the research. 87

Bibliography 89

Appendix A Body of email sent requesting evaluation 96

List of Tables
3.1 Research methods used to derive tasks requiring cognitive support.. 38

3.2 List of Prot́eǵe and its extensions evaluated against knowledge engineering

tasks. Anx indicates the support was provided in that tool, ap that there

was partial support, and a dash that there was no support.. 45

4.1 Sample enumeration of elements in Jambalaya. 57

List of Figures
1.1 Norman’s model of how users understand tools such as software [63] 6

2.1 The components of the 2nd Generation web. 13

2.2 The Prot́eǵe user interface with the Jambalaya and TGViz tabs visible (cir-

cled) .17

2.3 Screenshot of the Construct ontology editor (networkinference.com). . . . 18

2.4 Prot́eǵe’s EZ-OWL visual ontology editor. 19

3.1 Instance Tree tab for Protéǵe, supporting slot-based browsing. 41

3.2 Ontoviz plug-in for Prot́eǵe, showing a portion of the wines ontology. . . 42

3.3 TGVizTab plug-in for Prot́eǵe, using a hyperbolic layout on the wines on-

tology .43

3.4 Jambalaya plug-in for Protéǵe, showing the concepts and relations in the

wines ontology .44

4.1 Jambalaya view showing the CVF ontology as a horizontal tree. 63

4.2 Including the CVF ontology in Protéǵe. The faded letters for the CVF

classes indicate they cannot be modified. 65

4.3 The user instance creation form in the CVF. New instances can be created

and options set using this form.. 66

4.4 Jambalaya view showing customizations, such as new button in top-right

corner. .67

4.5 Jambalaya view without customizations. Note number of buttons, and dif-

ferent initial layout. .68

4.6 Types of software engineering research results ([72], p. 4) 71

5.1 Customization model, showing the relationships between Customizer and

Designer, and Customizer and User. 81

List of Figures x

5.2 Distributed cognition research loop [43] 87

Acknowledgement

To my supervisor, Dr. Peggy Storey, for wisdom and patience and encouragement.

To my committee members for their helpful suggestions and interest.

Thanks to Ian Bull and Elizabeth Hargreaves for their suggestions and comments which

strengthened this work. Thanks also to my fellow lab members, who have been instrumen-

tal in guiding this research, particularly Mechthild Maczewski, for seeing the big picture.

Thanks to Rob Lintern for his help and programming expertise.

Funding for this research was provided by an NSERC scholarship and a grant from the

U.S. National Cancer Institute Centre for Bioinformatics. I wish to thank each of these

funding bodies for their support.

I wish also to acknowledge the support, financial, moral, and otherwise, from the

Prot́eǵe team at Stanford, including Dr. Mark Musen, Dr. Natalya Noy, and Dr. Ray

Fergerson. The Protéǵe resource is supported, in part, by grant P41 LM007885 from the

National Library of Medicine.

Portions of this thesis (chapter 3) appear in [28].

Dedication

To Kambria, for everything.

Chapter 1 – Introduction
Three of the many benefits which computer science (particularly Internet-based computer

technology) can provide to society are new ways of addressing the themes ofdiscovery,

understanding, andcommunication.

Discovery, in the sense of exploring and uncovering new truths and explanations for any

number of questions;

Understanding, in the sense of leveraging existing knowledge and using this new knowl-

edge to do new and different things, and

Communication, in the sense of dealing with other human beings and non-human intelli-

gent ‘agents’;

Two research streams which address these broad themes are knowledge engineering and

cognitive science. This thesis examines these streams with respect to supporting the un-

derstanding of complex knowledge models, and applies software customization to improve

the cognitive support for this mentally demanding task. The combination of cognitive sci-

ence and knowledge engineering is a powerful mechanism for empowering people to find

new things to discover and attempt to understand, and to find new ways to help people

communicate and collaborate.

1.1 Knowledge engineering

Knowledge engineering is an area of research that is increasingly relevant today. Typi-

cally associated with the heady days of Artificial Intelligence (AI) research (culminating in

the mid-1980s), and similarly part of the AI ‘winter’ that ensued, knowledge engineering

nonetheless remains highly relevant to many ordinary users. The term ‘knowledge engi-

neering’ refers to the development of intelligent, knowledge-aware applications, both in

traditional AI arenas like expert systems, but also in areas such as the creation of end-

user wizards—like the much-maligned paper-clip from Microsoft Office. Throughout this

thesis, the term ‘intelligence’ will be used in the sense it is in the following quotation:

1.1 Knowledge engineering 2

. . . “intelligent” refers to the ability of a system to find implicit consequences of

its explicitly represented knowledge. Such systems are therefore characterized

as knowledge-based systems. ([61], p. 5)

In other words, the focus is on a program which can do more than strict computation, and to

do so requires some form of representation of knowledge to solve a problem. Knowledge

engineering is:

• concerned with building knowledge-centered, intelligent software

• interested in leveraging existing data (increasingly networked) to build more power-

ful tools

• follows a systematic process.

On the other hand, it isnot

• trying to build a replacement for human reasoning or common-sense

• going to solve all problems

• characterized byad-hoctool development

Following a systematic process—a methodology—in tool development is an important

step in developing robust and well-understood tools. The software development field has

been involved in an evolutionary process, as software development becomes more and more

a large-scale, industrial effort, largely deserving of the ‘engineering’ moniker (see [71] for

a detailed essay on this phenomenon).

Knowledge engineering is further back on this development trajectory, but progressing.

The preceding years have been characterized byad-hocdevelopment, and lately there has

been a move towards more of a systematic approach to the development of knowledge-

based systems. As stated in [82], “[t]his requires the analysis of the building and mainte-

nance process itself and the development of appropriate methods, languages, and tools spe-

cialized for developing [knowledge-based systems] ([82], p. 1).” In a survey I conducted,

detailed in3.1.2.1, I found more than half of knowledge engineering projects involve five or

fewer individuals. In terms of the increase in reliability and size of applications, knowledge

1.2 The growth of intelligent systems 3

engineering is largely dominated by the hobbyist and the researcher. However, demand for

these applications is causing many to grow in scope and scale. Such growth in turn de-

mands adoption of more systematic processes of development; a trajectory which closely

mirrors that of software development.

In addition, the successes of the World Wide Web have shown many people the power

of distributed information—such as searches using Google—and led some researchers and

developers to leverage knowledge engineering techniques to provide even more meaningful

information - such as those the semantic web initiative [9] describes. This vision foresees

many different systems used to describe data and domains, enable interoperability, and se-

cure transaction success, and as such will have a large impact on the knowledge engineering

domain.

One of the byproducts of this success will be a requirement for improved metaphors for

understanding the claims about the world that these different models make. Numerous dif-

ferent taxonomies, vocabularies, and data dictionaries will place a heavy cognitive burden

on knowledge engineers and domain experts as these individuals attempt to comprehend

them; researchers have shown that formal, logic-based language is difficult for humans to

comprehend [73].

Artificial intelligence has, by and large, failed to impress, and is typically seen as having

little practical value. Despite that perception, however, many new products incorporate

AI technology, rather than being developed as the stand-alone ‘Expert Systems’ of the

past. This distinction is akin to the difference between robot and cyborg—the one a pure

machine, the other a melding of the best of biology and the best of technology; it seems

much more likely that we will see a robot-like human before a human-like robot.

1.2 The growth of intelligent systems

One potential ‘killer app’ for knowledge-based systems is the Semantic Web initiative [9].

The semantic web describes an effort, sponsored by the World Wide Web Consortium

(W3C), which aims to develop machine-understandable data on the Internet; the plan is

1.2 The growth of intelligent systems 4

to take the current information on the Web or Internet, add additional markup (metadata),

and allow computers to perform operations on that data (this idea is covered in Chapter2).

The Semantic Web itself is not an application, but rather, a platform for applications. The

reason this concept has great potential to serve as a vehicle for the first truly widespread

knowledge-based tools is two-fold: first, it leverages the existing wealth of data on the Web,

which grows nearly exponentially; secondly, it uses an open, global standards process to

agglomerate the large amount of existing knowledge about machine-enabled reasoning,

coming from the early developers of these tools (such as MYCIN [15]), with existing web

knowledge and standards.

The emergence of personalized web journals, known as web logs or ‘blogs’, illustrates

this development. Blogs themselves are not particularly revolutionary, and many of them

are quite banal; however, when combined with the distributed nature of the Internet, and

a handful of standardized protocols, blogs become information sources of unparalleled

promise. One set of standards, the Rich Site Summary or RSS standards, provide blogs

with a means to syndicate content with standard metadata. This typically consists of items

like publication date, title, author, category, and a preview. RSS clients can interpret this

data (much like an email reader) and allow the end-user to determine whether a particular

entry is worth reading in its entirety.

Blogs often form an essential part of social networks, since most blogs have a highly

personal, informal aspect to them. Social networks have other models, most popular of

which is the Friend of a Friend vocabulary (FOAF), which defines some standard social

networking terminology, such as biographical information and relationships (e.g., Person

A knows Person B). The semantic aspect of this terminology allows machine agents to per-

form complex queries on the networks formed as each individual creates a FOAF-formatted

description of herself. This information could then be used to determine which blogs may

be of interest: for example, all bloggers who live in the UK and are interested in football

(as long as everyone agrees what ‘football’ is—interesting disambiguation problems still

remain). This example demonstrates the enhanced semantics that the connected nature of

1.3 Cognitive support enhances knowledge engineering tools 5

the Internet provides. Such networks have the potential to scale exponentially (for exam-

ple, you have two friends, and they each have two friends, and so on). This places a heavy

cognitive burden on the human making use of this network.

1.3 Cognitive support enhances knowledge engineering tools

At the beginning of this chapter, I mentioned that there are two streams of research that deal

with the issues of discovery, understanding, and communication of knowledge - knowledge

engineering and cognitive science. Knowledge engineering techniques alone will not pro-

vide all the means to address these issues. Leveraging the power of knowledge engineering

in a way which seeks to address human and task needs is complex, and current knowl-

edge engineering tools do not provide much analysis into how or why they approach this

problem. Cognitive science provides some techniques to do this.

The actual method used to accomplish a particular task (e.g., which knowledge repre-

sentation scheme is used, what underlying problem-solving is used) is not the focus of this

thesisper se. What is the focus is the way in which humans can access that power. One

of the things preventing people from accomplishing this is the lack of understanding about

the importance ofcognitive support[88], the elements of a tool which aid human reasoning

and understanding. As Walenstein states, “The first rule of tool design is to make it use-

ful; making it usable is necessarily second, even though it is a close second . . . [A tool’s]

usefulness is ultimately dependent upon [its] utility relating to cognition: i.e., to thinking,

reasoning, and creating. Assistance to such cognitive work can be called cognitive support

([88], p. 5).”

The relationship between usability, utility, and cognitive support is a complex one. Nor-

man [63] defines three models of how a system works (where system is any external device

a human can interact with). The designer has a mental model of how it should work, the

user has a mental model of how the system is working, and the system itself has a model,

which Norman terms the system image, of what is actually happening (reality). This is

shown in Fig.1.1.

1.3 Cognitive support enhances knowledge engineering tools 6

Figure 1.1. Norman’s model of how users understand tools such as software [63]

Usability and utility exist as abstract concepts in the system image, created at design-

time. They define how easy it is to do something with a tool, and what can be done with

a tool, respectively. Cognitive support measures how well the tool supports a given user’s

cognitive processes, and is the product of the interplay between the system image and

the user’s needs and desires. Thus, usability and utility affect cognitive support based on

the user’s perception of the system image. Designing a tool to provide cognitive support

requires understanding the specific needs of users of the tool, as well as what functionality

to provide (that is, addressing both the domain and the user requirements).

Cognitive support research is in its infancy in software engineering [88], and more so in

knowledge engineering. Tool designers in knowledge engineering certainly consider issues

such as utility and usability (and implicitly cognitive support). However, what is lacking

is a formal exposition of why and how such design considerations were made. Chapter3

presents a preliminary analysis of what cognitive support is required in knowledge engi-

neering tasks, specifically for users who perform modeling tasks. It is one of the goals of

this work to identify cognitive support requirements in knowledge engineering processes,

in order to make knowledge engineering projects more productive.

Lack of complete understanding of cognitive support issues for knowledge engineering

tools partly explains the lack of adoption. This is particularly relevant in knowledge engi-

neering since, as was shown in preceding paragraphs, the cognitive burdens on users will

1.3 Cognitive support enhances knowledge engineering tools 7

only increase. For example, in one prototypical example the size of the domain model, let

alone the domain itself, is much larger than what any one human user can make sense of.

This model, known as the National Cancer Institute Thesaurus (NCI Thesaurus), “facili-

tates the standardization of vocabulary across the Institute and the larger cancer biomedical

domain” (seehttp://ncicb.nci.nih.gov/core/EVS), containing “detailed se-

mantic relationships among genes, diseases, drugs and chemicals, anatomy, organisms, and

proteins [39]”. Providing cognitive support at appropriate places will be of great assistance

to modelers.

Few existing tools have dealt with cognitive support issues in a systematic manner.

The majority approach the problem by identifying areas theyconjecturemay need support,

often specific to a particular domain, then building that support into a tool, and finally

attempting to identify whether the tool met those requirements. Chapter2 examines these

solutions in more detail. This thesis attempts to divorce the specifics of particular solutions

from the larger challenges of cognitive support tools for knowledge engineering.

All tools can be said to provide various degrees of cognitive support, most often in

the form of simple representations of the knowledge being modelled. For example, most

knowledge modelling tools capture lists of the concepts and relationships of interest in an

indented tree list, similar to popular file management programs. The tools I examine go

beyond this to provide pictorial representations of the knowledge, commonly using some

form of directed graph. Representing information and knowledge in this form is particu-

larly important because it allows one to leverage techniques from information visualization

research.

Information visualization techniques are used in many domains to help provide insight

or to communicate information [16]. Information visualization leverages innate human

abilities to perform spatial reasoning and make sense of relatively complex data using some

form of graphical representation language. In the domain of knowledge engineering, such

a language is often based on graph theory and has two components: one, the use of nodes

to represent concepts in a domain; the other, the use of edges to represent relationships

http://ncicb.nci.nih.gov/core/EVS

1.4 Software customization: a possible solution? 8

between concepts. The language for visualizing information in this domain therefore con-

sists of manipulations of graphs in some form or another. Information visualization is one

technique for constructing advanced visual interfaces to provide additional utility in tools.

One problem many tools have, and information visualization solutions in particular,

is evaluating their implementations in real-world situations. Often cutting-edge solutions

are developed in research situations and fail to recognize the significance of the ‘last-mile’

problem - the stage of development which involves marketing, distribution, and final ad-

justments for usability. Tools which tend to languish on the web equivalent of store shelves

are said to suffer from lack ofadoption. Adoption, also known as technology transfer or

diffusion of innovations [69], is a complex notion and the subject of much study. For exam-

ple, merely showing that a tool is used more in a particular environment does not indicate

that specific changes were responsible for that adoption; other factors, such as social pres-

sures, may be responsible. Incorporating the adoption perspective into tools is an area of

active research (see, for example, the Adoption-Centric Reverse Engineering website [58]).

1.4 Software customization: a possible solution?

One potential way to resolve the challenges of creating a tool which provides cognitive

support for knowledge engineering is to focus less on the domain specific requirements for

the tool, and look instead to certain capable users in that domain to make the tool fit the

requirements themselves. One way of doing this is to incorporate customization features

into the tool. Customization, described in more detail in§2.4, allows users to alter either

the data, the presentation, or the functionality of a tool in order to reflect their needs. The

domain customizer is the only person in the technology transfer process who has acceptable

knowledge of both the cognitive support a tool offers and the domain knowledge of what

the tool should support. This thesis describes how I implemented customization support in

a tool for knowledge engineering and examines how this change might impact adoption of

this tool and its cognitive support.

1.5 Outline 9

1.5 Outline

This thesis is laid out as follows. This chapter provided a brief overview of the challenges

involved in knowledge engineering, and suggested some ways of thinking about the prob-

lems which underpins the remainder of the work. Chapter2 provides background on the

relevant technologies and related work, defining some key concepts and definitions used

in subsequent chapters. Chapter3 identifies some techniques I used to identify problems

with the cognitive support in current knowledge engineering tools. It also examines some

non-functional design goals cognitive support tools need to consider and concludes with an

approach to addressing the issue of adoption using one of these goals, that of customization.

In Chapter4 I describe extending a tool our lab has produced to incorporate customization.

I explain these changes in detail and motivate their use. I conclude this chapter with a

description of how I validated the changes I’ve made to the tool using domain experts as

evaluators. Chapter5 concludes the thesis by describing how these customization changes

may affect the adoption of a cognitive aid for knowledge engineering visualization.

Chapter 2 – Background
This chapter extends the introduction of concepts mentioned in the previous chapter, and

identifies existing tools and research which contend with those issues. It begins with a

broader focus, discussing knowledge engineering and its tools, how information visualiza-

tion is applied to knowledge engineering, and then discuss what adoption and customization

are, and how they are relevant to the topics at hand. The chapter concludes by putting these

topics in context of the work discussed in my thesis.

2.1 Knowledge engineering

I defined knowledge engineering in the first chapter as “the development of intelligent,

knowledge-aware applications” and defined intelligence (in§1.1) as the process of deriv-

ing the implicit from the explicit. Knowledge engineering typically consists of a knowledge

engineer following an established methodology [70], involving knowledge acquisition (or

elicitation), creating a formal representation of some form, and then testing the represen-

tation to ensure accuracy (in concordance with the requirements gathered). Of these three

steps, the one I focus on in this thesis is the knowledge representation phase. Issues such

as extracting knowledge and verifying models are beyond the scope of this work; I focus

on the modeling and representation steps because this is where most conceptual problems

occur. Designing models of the world is very difficult to do, and formalizing such a model

for use in software applications more so. One must keep in mind the importance of mod-

eling a domain properly—to direct thinking—and the inherent bias involved in any such

modeling task—they reflect a particular world-view. The knowledge representation phase

therefore requires a great deal of cognitive effort from the modeler.

2.1.1 Knowledge representation and ontologies

There are several ways to store knowledge for later use. Natural language is one such way,

and most closely approximates human usage. Typically, though, we wish to use computers

2.1 Knowledge engineering 11

to operate on the knowledge, and natural language is a poor choice for doing this, due

to its lack of formality and its implicit syntax and semantics. A formal language which

contains mappings from a syntax to computer-recognizable symbols, as in first-order logic

or programming languages, is best for this purpose. A formal language is defined as

An alphabet and grammar. The alphabet is a set of uninterpreted symbols.

The grammar is a set of rules that determine which strings of symbols from

the alphabet will be acceptable (grammatically correct or well-formed) in that

language. The grammar may also be conceived as a set of functions taking

strings of symbols as input and returning either “yes” or “no” as output. The

rules of the grammar are also called formation rules [83].

Knowledge bases store representations of knowledge in a formal language. Traditionally

they took the form of a set of statements or atoms about the world, together with a collec-

tion of rules describing how to operate on those axioms to produce new atoms [66]. This

approach to knowledge representation is well-suited to earlier, logic-based AI tools such

as MYCIN [15], a knowledge base for the domain of blood-borne illnesses developed in

the late 1970s and early 1980s. It was quite successful at determining medical diagnoses

for this limited domain, but suffered from an inability to adapt to new information—as this

involved re-entering knowledge from a domain expert and re-configuring the knowledge

model.

Later knowledge representation schemes evolved to store ‘default’ knowledge—that a

chair typically has four legs— in constructs known as ‘frames’ [57]. These frames were

instantiated when a situation arose that invoked that knowledge—for example, entering a

dining room with a table and chairs. Other representations have been created, many from

the large amount of work done on human cognition: neural networks, for example, try

to mimic the distributed nature of human neural processing abilities in software. For each

representation scheme a model had to be created of what knowledge was to be captured, and

the knowledge itself had to be acquired, and these have proven to be the bottlenecks. Formal

knowledge models are termed ontologies, and capture the concepts and relationships in a

2.1 Knowledge engineering 12

domain.

2.1.1.1 Ontologies

The word ontology is derived, it should be noted, from the philosophical usage, where it

refers to the study of being and existence. In AI, the meaning has been subverted, and Gru-

ber’s definition is widely agreed-upon: “ontologies are formal specifications of a concep-

tualization ([42], p.2).” The term conceptualization refers to an abstraction of a real-world

issue of interest; in the case of MYCIN this issue was blood infections. Ontologies do not

prescribe the technology used to define them, and indeed take many forms; Uschold [87]

provides an extensive discussion of differences between ontologies.

Ontologies are used in knowledge engineering to do domain modelling, and are ex-

cellent at capturing static knowledge [82]. Once an ontology is created, the claims it

makes about the domain—for example, that breast neoplasm is found in the breast—are

its ontological commitment, and implicitly agreed to by the users of that ontology. On-

tologies are used to facilitate different types of communication, and range from the highly

informal to the rigourously formal. Ontology development is increasingly following stan-

dardized methodologies (such as CommonKADS [70]). Ad-hocmethods have their uses,

however, particularly for smaller, prototype models. One such method is described in Noy

and McGuinness [64]. This document describes a five step methodology for constructing

an ontology.

In this work, I focus largely on modelers working with formal, frame-based ontologies,

and specifically, ontologies created with a particular tool, the Protéǵe ontology editor from

Stanford University (see§2.2.1). Studying the ontology modeling process is of interest be-

cause it is a highly cognitive process, demanding detailed understanding of both modeling

techniques and domain knowledge from modelers. As tools grow broader, the knowledge

models they use also increase in complexity. The example of the NCI Thesaurus given in

the previous chapter (§1.3) illustrates this: given its mission of standardizing vocabular-

ies in cancer biomedicine, and the ever-increasing knowledge generated by research in the

2.1 Knowledge engineering 13

Supporting application development in the Semantic Web � 3

ontology stores, editors, and inference engines. It combines means to coordinate the
information ow between such modules, to de�ne dependencies, to broadcast events
between di�erent modules and to translate between ontology-based data formats.
The article is structured as follows: First, we provide a brief overview about the

Semantic Web, in particular about all its languages, in section 2. We list require-
ments for an Application Server for the Semantic Web in section 3. Sections 4 and 5
describe the design decisions that immediately respond to important requirements,
namely extensibility and discovery. The conceptual architecture is then provided in
section 6. Section 7 presents the KAON SERVER, a particular Application Server
for the Semantic Web which is currently developed in the EU funded WonderWeb
project. In section 8 we will elaborate more on the scenario depicted in �gure 1,
i.e. how it can be solved by making use of the KAON SERVER. Related work and
conclusions are given in sections 9 and 10, respectively.

2. THE SEMANTIC WEB

In this section we want to introduce the reader to the architecture and languages of
the Semantic Web that we use in our Application Server. The left hand side of �gure
2 shows the static part of the Semantic Web2, i.e. its language layers. Unicode,
the URI and namespaces (NS) syntax and XML are used as a basis. XML's role
is limited to that of a syntax carrier for data exchange. XML Schema [Biron and
Malhotra 2001] de�nes simple data types like string, date or integer.

Modification

Storage

Fig. 2. Static and dynamic aspects of the Semantic Web layer cake

The Resource Description Framework (RDF) may be used to make simple asser-
tions about web resources or any other entity that can be named. A simple assertion
is a statement that an entity has a property with a particular value, for example,
that this article has a title property with value \Supporting application develop-
ment in the Semantic Web". RDF Schema extends RDF by class and property
hierarchies that enable the creation of simple ontologies.

2Semantic Web - XML 2000, Tim Berners-Lee,
http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html

ACM Transactions on Internet Technology, Vol. V, No. N, March 2003.

Figure 2.1. The components of the 2nd Generation web

field, it is safe to say the NCI Thesaurus will increase fairly quickly in size, perhaps by

10-12 concepts a day, as the NCI has several modelers working on various aspects of the

ontology each day. A description of these tasks is provided in§3.1.2.2.

2.1.2 The Semantic Web initiative

The Semantic Web initiative of the World Wide Web Consortium (W3C) ([8], [65]) pro-

poses strategies to enable the “abstract representation of data on the World Wide Web” [56]

such that additional, machine-comprehensible metadata might be created. Global standards

have been developed for this initiative, such as the Resource Description Framework (RDF)

[53], a formal language for describing subject-property-object relationships, the Web On-

tology Language (OWL) [77], a knowledge representation formalism, and XML, a data

serialization format. Together with renewed interest in intelligent systems, these promise

to increase the semantic information available. Combined with the power of distributed

application development via the Internet, any number of tasks, such as making inferences

on web site metadata, to intelligent e-commerce shopping agents [9], become more feasi-

2.2 Graphical knowledge engineering 14

ble and capable. Figure2.1 illustrates how these components may fit together, leveraging

existing Internet and World Wide Web technology such as Uniform Resource Identifiers

and Unicode.

2.1.3 Building the semantic web

Machine-readable knowledge, when fully standardized, promises to make the idea of using

a machine to make decisions at once clearer and more concise for the large body of pre-

existing software developers working on the Web. Although it was only 5-10 years ago

that most large companies had never heard of the Web, it now seems obvious that nearly all

applications will be web-enabled in some form, for example, as web services (see Curbera

et al. [21] for an introduction). A further 5-10 years from now new Web users will find

it hard to believe that people ever had to search for airline tickets, as their computers will

be able to present them with the result automatically. The Semantic Web promise will

add further complexity to the knowledge modelling task. To re-use the example from the

National Cancer Institute, a semantic web-enabled thesaurus, which is fairly close to reality

(there is already an OWL ontology describing it [39]), brings new challenges. For example,

modelers and editors (modelers tasked with strategic development) need to consider other

ontologies, such as anatomy models. They also need to ensure their model is more precise,

stable, and accurate than before. Knowledge engineering in the Semantic Web vision will

only increase demand for adequate cognitive support. Some questions that might need

answering: What commitment do I make in using this external ontology? What is the

provenance of the knowledge represented by the ontology?

2.2 Graphical knowledge engineering

As mentioned in the introduction, there has been some research into cognitive support for

knowledge engineering, largely in the area of user interfaces for expert systems. This work

was motivated in large part by the realization that few users could easily understand what

a tool was doing or how to make it work. Some early knowledge representations were

2.2 Graphical knowledge engineering 15

directly graphical, such as Sowa’s work on conceptual graphs [78]. This representation

format, while certainly more readable than first-order logic based representations such as

KIF [38], focused more on being logically rigorous than providing cognitive support for

end-users. A similar idea, concept maps [34], were more focused on user support, but

lacked rigorous logical representations for knowledge acquisition and inferencing. CYC,

an effort to represent common-sense knowledge, had several user interfaces built for it, of

which one, by Travers, used a room metaphor to browse different areas of the ontology [86].

However, use of this metaphor has difficulty with different relationships. Another knowl-

edge representation tool, CODE4 [76], focused in more detail on the user experience, and

also combined that focus with a logically rigorous representational semantics. A key detail

that CODE4 focused on was providing multiple methods to view the knowledge, empha-

sizing the separation of presentation from model. For example, the system provided graph

layouts of the knowledge base, but also provided a tabular interface.

Other early work that is applicable to this subject includes the research done in visual

programming, particularly in Expert Systems. Visual programming is important because

the tasks associated with it (program understanding, control flow, model checking) are

highly consistent with ontology engineering tasks, as we shall see in more detail. A good

example of such a system is KEATS, a knowledge engineering tool with strong emphasis

on visual programming and program visualization [24]. KEATS supported the notion of

sketching early versions of a knowledge base before the actual design commenced. This

differs slightly from the focus in this thesis, which is more concerned with how model-

ers understand or verify a model after it has been (largely) completed. The GKB-Editor

tool [47] has a graphical interface for visualizing and editing a frame-based knowledge

base. It has several views, such as a hierarchical view of the concept hierarchy, a relation-

ships viewer, and a spreadsheet viewer. However, the views are static once defined, and do

not allow much customization and interaction on the part of the user.

Another set of tools dealt with visualization techniques in information retrieval and

management. An early work, SemNet [30], had several complex metaphors for visualizing

2.2 Graphical knowledge engineering 16

personal information, including fisheye views, zooming, and hyperlinking; however, the

hardware available at the time (1988) greatly limited its adoption, as did the relatively small

amount of electronic data. Other work built on the graph visualization theme, discovering

new techniques for browsing networked data. A lot of work has been done on visualizing

hypertext networks (closely related to concept maps). For example, VISAR [20] was an

early graphical tool to aid in the construction of hypertext systems, again using CYC.

2.2.1 Prot́eǵe

The tool my lab uses in our research is Protéǵe, an ontology editor from Stanford Medical

Informatics with a Java-based graphical user interface [37]. Originating as a system for

modelling medical guidelines and protocols, this tool provides an interface to create and

model ontologies, as well as to acquire knowledge based on that ontology. Protéǵe has

traditionally used a frame-based language to construct ontologies, an OKBC-compliant

frame language according to the specification available athttp://www.ai.sri.com/

˜okbc/spec.html . Frame languages, first mentioned in§2.1.1, use frames to model

objects in the world, and slots in each frame to represent relationships or properties of an

object. Furthermore, slots can have constraints, or facets, restricting allowed values.

A popular example used to illustrate this process is an ontology of wines and associ-

ated meal courses [64]. An ontology modeler creates an ontology which defines what wine

is, what food is, and how they relate to each other, among other things. For instance, the

modeler may state that the frameBordeauxhas a slotproduced-bywith a value ofChateau

Lafite. Another slot may beyear-bottled, describing when a particular wine was bottled,

with a facet restricting this togreater than 1990. When this model satisfies the requirements

for the system (gathered at a preliminary stage), instances are collected/acquired from do-

main experts (vintners, oenophiles, etc.) to expand the knowledge model to include data

that fits the model. Additional projects can be referenced using Protéǵe’s project inclusion

mechanisms. Including a project is a form of importing it. The imported project’s concepts

and relationships are made available for use, but cannot be modified. This allows modelers

http://www.ai.sri.com/~okbc/spec.html
http://www.ai.sri.com/~okbc/spec.html

2.2 Graphical knowledge engineering 17

Figure 2.2. The Prot́eǵe user interface with the Jambalaya and TGViz tabs visible (circled)

to use concepts in these external ontologies without altering them directly.

The combination of data and knowledge model (ontology) can now be termed a knowl-

edge base, and software tools are used in conjunction with the knowledge base to create

knowledge-aware applications. As the application is used, the original ontology may be

refined to improve accuracy.

2.2.2 More recent tools

Leveraging Commercial Off The Shelf Software (COTS) to create visual knowledge en-

gineering tools offers well-supported development environments with a reduced learning

curve for new users [4]. The most sophisticated of these is SemTalk (www.semtalk.

com), now known as Construct, developed by Network Inference (Fig.2.3). Construct

uses Microsoft Corporation’s Visio diagramming product and creates a separate symbol

library for the tool with associated semantics. For example, connecting certain shapes to-

www.semtalk.com
www.semtalk.com

2.2 Graphical knowledge engineering 18

ConstructTM is a visual modeling tool, designed for easy, efficient and
collaborative building of enterprise-ready ontologies in the W3C's OWL language.

EASE OF USE
Construct enables domain experts and
new ontology modelers to quickly be able
to produce high quality ontologies, while
enhancing expert modeler productivity.

Familiar functionality

Construct uses the drag and drop
paradigm of Visio, supported by the full
Visio feature set.

Drag and drop from OWL stencil

Construct provides a native OWL stencil
for intuitive diagramming and graphical
building of complex axioms.

Diagram and tree views

Users work with diagram and tree
views according to preference.

OPEN EXPRESSIVE WAY TO
DESCRIBE ONTOLOGIES
Construct provides native support for OWL-
DL, the W3C’s recommended standard for
reasoning-ready ontologies.

LIFECYCLE AND
COLLABORATION SUPPORT
Automated syntax checking

Real-time validation of correct OWL syntax.
Wizard provides recommendations on
ontology construction.

Automated semantic checking

Ontologies can be checked for semantic
consistency and satisfiability (requires
Cerebra Server™, sold separately).

Modular, team-based modeling

Supports several methodologies for
collaborative modeling:

• Unified consistency checking of
linked ontologies for parallel and
distributed development

• Automatic identification of duplicate
objects in linked ontologies

• Synchronization of changes to
linked ontologies

• Models drawn hierarchically or
thematically across pages, allowing
subdivision of domains for ease

Figure 2.3. Screenshot of the Construct ontology editor (networkinference.com)

gether creates an associated sentence in the knowledge base.

EzOwl (http://iweb.etri.re.kr/ezowl/) is a plug-in for the Prot́eǵe editor

which allows modelers to visually compose OWL ontologies using graphical operators. For

example, in Fig.2.4, the modeler is defining a class by taking the intersection of two other

classes (an OWL-specific semantics that frame-based representations do not support).

2.2.2.1 IsaViz

Isaviz [67] is a tool designed by the World Wide Web Consortium (W3C) to visualize

knowledge representations constructed using the Resource Description Framework (RDF).

It uses the GraphViz library from AT&T. Although the user can configure how the views

appear, they are not very interactive nor easily customized. The parsing and generating

of graphs can be quite slow. It also has facilities for styling the graph using a stylesheet

concept, exporting to SVG, and simple editing functions. This stylesheet concept has a lot

of potential for handling customizations.

http://iweb.etri.re.kr/ezowl/

2.2 Graphical knowledge engineering 19

Figure 2.4. Protéǵe’s EZ-OWL visual ontology editor

2.2 Graphical knowledge engineering 20

2.2.2.2 Ontorama

Ontorama is a visualization tool for RDF-based graphs, detailed in Eklundet al. [25]. It

presents RDF graphs in a hyperbolic graph layout using radial layouts to align the nodes

on a spherical surface. A significant challenge for Ontorama and other hyperbolic browsers

is that not all ontologies are trees (in the mathematical sense) according to the inheritance

hierarchy (is-a). For example, some domain models are constructed using partonomy (part-

of) as the key structural relationship. This means these tools must somehow handle the case

where these relationships break in order to display all the nodes—i.e., be able to visualize

forests as well as trees.

2.2.2.3 Ontobroker/Kaon

The Ontobroker tool [22] uses a similar hyperbolic view technique to aid in the navigation

of ontologies. It has recently been superceded to some extent by KAON [52], a similar tool

with more of a focus on the Semantic Web. The strengths of these tools lies in the degree of

integration between the tool and the visualization engine, which makes the representations

in the graphs more salient.

2.2.3 Advanced visual interfaces in knowledge engineering

While graphical knowledge engineering tools tackle some problems, the solutions provide

little or no justification for how the approach might be defined as successful (for example,

number of users, novelty of approach), let alone evaluating success. To design better visual

interfaces in knowledge engineering requires stepping back from the problem and examin-

ing the knowledge engineering tasks that need better cognitive support. One type of visual

interface represents knowledge structures as graphs, and uses well-researched techniques

from graph visualization to introduce new ways of manipulating the model.

Graphicalaide-memoirescan greatly assist human cognition. For example, when adding

several large numbers together, nearly everyone needs the assistance of pencil and paper to

store the intermediate values. Based on studies such as Bauer and Johnson-Laird’s [6], it

2.3 Adoption and innovation diffusion 21

would seem diagrammatic representations of complex models can be of similar assistance.

However, the use of such a cognitive aid has overhead. For example, using Venn diagrams

to represent complex logical sentences such as ”Jenny is a student or Jenny is a teacher, but

not both, and Paul is a student” can help identify what exactly is being stated, but requires

a certain degree of ‘graphical literacy’. In other words, while most people are quite able to

interpret meaning from sentences, not everyone can do this from a diagram. This inability

is attributable to lack of experience. One of the major challenges for graphical cognitive

aids, then, is the ability to leverage innate abilities for spatial reasoning without demanding

too much in the form of graphical interpretation.

I provide detail on tools which create advanced visual interfaces for knowledge engi-

neering in the following chapter, which introduces such tools in the context of knowledge

engineering tasks which were identified through several research methods, and thus have

more relevance there.

2.3 Adoption and innovation diffusion

Throughout this thesis reference is made to the challenge of technology transfer, or tech-

nology adoption. These terms refer to the transfer of an innovation from developers to

potential adopters. The seminal work in the study of technology transfer is by Everett

Rogers, “Diffusion of Innovations” [69], first published in 1962. In this book, he exam-

ines some reasons why things are or are not adopted, from new cereals to new medical

techniques. In software engineering, (and by extension, knowledge engineering [27]), the

‘adoption problem’ refers to the fact that many tools, particularly research tools, fail to be

deployed in industry [58]. Adoption is a complex process which defies simple explana-

tions: for instance, the fact a tool shows great usefulness and usability do not guarantee it

will see use at the target company. I elaborate on this point when justifying my choice of

evaluation techniques in Chapter4.5.

Traditionally, technology diffusion has been seen as an imperialistic process, where the

innovator comes up with something he thinks is clearly better than what is currently used.

2.3 Adoption and innovation diffusion 22

In this perspective, not adopting an innovation is ‘bad’, and using it is ‘good’. Researchers

have come to realize this process is not so simple, and that there are many, many factors

affecting adoption. Rogers illustrates this with his description of women and public health

in Latin America. While boiling water was technically healthier, the women refused to

change their ways due to social pressures and traditional beliefs.

Stan Rifkin writes [68] of how this new perspective affords a greater understanding of

technology and its use, particularly in software. Developers of new products—in this the-

sis, advanced visual interfaces for knowledge engineering—must understand how adoption

processes work in order to effectively design a tool. For example, Rifkin mentions ([68],

p. 24), that one way of looking at tool development is by characterizing the functionality

a tool offers as ‘competency-enhancing’ or ‘competency-destroying’. The latter category

describes tools which require one to learn new skills, which fits the tools described in the

following chapter. Such tools are likely to be resisted and feared, at least initially.

Rogers lists five factors which affect diffusion ([69], p. 14-15):

1. Relative advantageis the degree to which an innovation is perceived to be better than

the idea or product or process it supersedes.

2. Compatibilityis the degree to which an innovation is perceived to be consistent with

the existing culture and needs.

3. Complexityis the degree to which the innovation is difficult, or at least more difficult

that its competitors.

4. Trialability anddivisibility are measures of the degree to which an innovation may

be taken apart and only a part tried. A thick, monolithic innovation has a lower

trialability than one that has separable components, each of which adds some value.

5. Observabilityis the degree to which the results of the implementation will be visible.

To relate this to the discussion of cognitive support, usability, and utility in§1.3, I define

utility as the set of functions a tool offers. Usefulness is a measure of how well the tool

helps the human user accomplish something, that is, how much cognitive support it pro-

2.4 Customization and domain models 23

vides. Usefulness is equivalent to Rogers’s concept of relative advantage. Usability is a

measure of how easy or difficult the the tool’s utility is to access. Thus, it is a measure of

complexity and compatibility.

Adoption analysis is as essential an aspect of software development as requirements

gathering (although it might be characterized as one facet of comprehensive requirements

gathering). For this research, adoption analysis provides a means to assess, for designing

new tools, what the reaction will be. For understanding existing tools, adoption analy-

sis illustrates why those tools were successful or unsuccessful. I use both approaches in

the next chapter in analyzing current tools that provide cognitive support for knowledge

engineering.

2.4 Customization and domain models

One promising method for addressing some of the concerns adoption research uncovers is

software customization. In designing tools, in this case advanced visual interfaces to pro-

vide cognitive support in knowledge engineering, the ability to adapt to domain-specific

requirements is important. The chief advantage for knowledge engineering lies in a cus-

tomizable tool’s ability to adapt to specific requirements, something which characterizes

knowledge engineering projects. For instance, tool requirements at the NCI may require

viewing large numbers of concepts in very specific ways. An ontology integration project

may be more interested in overviews of a number of smaller models. Functional customiza-

tions, presentation customizations, and data customizations are the three main forms cus-

tomization can take.1 In data customization, the format and content of data and metadata

can be customized. Applying an XSL (Extensible Stylesheet Language) transform to an

XML file to produce a different format is an example of this. Presentation customizations

change either the organization of information in a display (information architecture) or the

graphical design. Changing the appearance of a web page using Cascading Style Sheets

(CSS) is an example of graphical design. Finally, one can customize the functionality a

1This and the following discussion are taken largely from [54], but any errors are mine.

2.4 Customization and domain models 24

tool offers using control/behaviour customization. This can include removing features,

constraining what the user can do, or enhancing features to extend functionality for the

user’s needs. Chapter4 describes a customization implementation operating partially on

the information architecture of a tool, as well as constraining and selecting which features

to provide.

2.4.1 Who is involved in the customization process?

Michaud [54] lists three idealized roles for players involved in customizing software. The

person creating the software, the Designer, defines the major architectural framework for

customizations, such as feature set and interaction styles. The Customizer is a person who

has extensive domain knowledge and refines the tool using that knowledge. Finally, the

End User is one for whom the customizations are performed and, for various reasons, has

no interest in customization. Throughout this thesis I will refer to Michaud’s user roles

using initial capitals, as in Customizer or End User.

His roles parallel those described in Finnigan etal. [32], which describes the creation

of a domain independent ‘software bookshelf’ for program understanding. In that work,

the equivalent roles are titled builder, librarian, and patron. In both cases, the middle role

(Customizer or librarian) is central, and is a person with good tool knowledge as well as

more domain-relevant knowledge. It is the domain knowledge which produces the benefits

for the End User or patron.

2.4.2 Customization approaches

Many tools offer some form of customization support. Microsoft Word, for example, gives

users the ability to remove and add features, and also allows programmers to operate on the

application using the Visual Basic for Applications (VBA) scripting language. Two areas

of active research are worth noting, model-driven architectures and scripting.

2.4 Customization and domain models 25

2.4.2.1 Model-driven architectures

Model-driven architecture uses a formal and explicit model (often an ontology) to create an

architecture for a software tool. A prime example of this is the Object Management Group’s

MDA initiative (seehttp://www.omg.org/mda/). Changing the model produces a

corresponding change in the application. In this way, customization is reduced to modeling

changes. More discussion of this is given in§5.6.

KNAVE — A knowledge-based system created by researchers at the Stanford Medical

Informatics group [17], KNAVE (Knowledge-based Navigation of Abstractions for Visu-

alization and Explanation) explores the time-sensitive nature of medical records, present-

ing an interface for clinicians to explore and understand recommendations the application

makes regarding protocol-based clinical care. The system is a timeline style visualization,

using structured semantic information plotted against a temporal axis. This additional level

of knowledge is a weakness, because it “relies heavily on detailed knowledge provided by

a domain expert . . . [therefore] we see no way to achieve this level of fluency without the

help of a domain expert.” The KNAVE project obtains its successes by tightly integrating

the domain and the visualization. Separating these two models is important to achieve more

domain independent tools.

Ontoweaver— Ontoweaver is an ontology-based hypermedia application [48]. Hyperme-

dia applications are applications which use rich media and complex relationships to create

dynamic applications, typically over a network. Ontoweaver makes use of a set of ontolo-

gies to determine what representation to present to users of a web site, as well as what

customizations can be made. For example, a website designer could modify the user ontol-

ogy based on an assessment of to whom the site is targeted, then modify the presentation

ontology and domain ontologies based on his understanding of the required information.

Ontoweaver would update the website automatically based on these modifications.

http://www.omg.org/mda/

2.5 Chapter summary 26

2.4.2.2 Script-based environments

Scriptable environments, a version of end-user programming [60], allow for customization

by the End User by extending the features of the tool using a scripting language. The RIGI

software reverse engineering tool, for example, allows users to extend the tool to support

their own cognitive requirements, which the tool Designers could not fully understand, as

mentioned in Tilleyet al. [85]. Their paper refers to the non-configurable approach as

‘builder-oriented’, and describes the implementation of a system which allowed the End

User to tailor the environment to suit his needs.

Interfaces themselves can be customized. Modern scripting languages, being inter-

preted and not compiled, can represent an interface in editable source format, and then dy-

namically update the interface. Jelly (http://jakarta.apache.org/commons/

jelly/jelly-swing.html) is one example of this. Jelly stores presentation infor-

mation in XML format, using that to describe a Java application’s user interface. The

traditional approach to UI design in Swing involves complex positioning and instantiation

of graphic widgets, which are then compiled. Jelly allows designers to determine the inter-

face dynamically. Another tool, described in [36], uses XML Schemas transformed with

XSL to create XForms, an emerging standard for web-based forms.

The work in this thesis combines these two perspectives on customization. As shown in

Chapter4, a model is created of a tool, allowing Customizers to modify the user ontology

as needed. Customizers can also create customized scripting actions which can be run by

end users to perform the needed functions.

2.5 Chapter summary

I have illustrated selected challenges created by the lack of appropriate cognitive support

tools for discovering, understanding, and communicating knowledge models. While visual

knowledge engineering tools exist, for the most part they fail to analyze what function-

ality is useful, and why. This chapter discussed challenges tools face in getting adopted,

http://jakarta.apache.org/commons/jelly/jelly-swing.html
http://jakarta.apache.org/commons/jelly/jelly-swing.html

2.5 Chapter summary 27

and suggested that the adoption question is one which must be considered early on at the

requirements analysis phase. The notion of software customization was introduced as a po-

tential means to address these adoption challenges. Customization allows domain experts,

not the tool designers, to make decisions as to what functionality is necessary or valuable

for their specific problem.

In the next chapter, I examine some tools which partially address the questions of de-

termining what cognitive support might be required, and using a combination of research

methods, attempt to present a preliminary assessment of cognitive tasks requiring support

in the knowledge modeling domain.

Chapter 3 – Cognitive support for
knowledge engineering
In the previous chapters of this thesis, I explained how knowledge engineering tasks are

complex, and becoming more so. I then proposed that visual cognitive support tools could

aid user comprehension of large, complex models of reality. Now, I examine what features

such a tool should have, using an existing effort from my research group as a form of case

study. This chapter then concludes with a more detailed exploration of problems such tools

face in adoption by users, and suggests a solution using customization.

3.1 Determining where cognitive support can help

In order to discover more details about where cognitive support might help, I used a num-

ber of research techniques, including background research, surveys, and qualitative eval-

uations.1 I make use of the work of others in my research group, CHISEL, giving credit

where appropriate.

3.1.1 Impetus for the research

Over the past few years, our research group at the University of Victoria has developed

a tool similar to those mentioned in the background review. Jambalaya—available at

http://www.shrimpviews.org —was initially developed as the result of a collabo-

ration between the Protéǵe team and Jambalaya developers [80]. Jambalaya was based on

a tool for visualizing software systems, and we recognized some obvious synergies with

knowledge engineering. This initial development and release was characterized by a lack

of any formal requirements process. While it was apparent to both teams that this tool was

potentially very useful, insufficient effort was made to identify what it should look like;

thus, the existing features were simply inserted wholesale into Protéǵe. We had identified

requirements for the tool based on our work in software comprehension [79], but had not

1Portions of this chapter were published in [26].

http://www.shrimpviews.org

3.1 Determining where cognitive support can help 29

done any work to identify the requirements in this different domain. Approximately six

months following the initial release of the plug-in, we began to question whether the tool

was meeting the requirements of the users, as we had not received much feedback, and had

never truly considered this in the beginning. We did a limited initial analysis of the Jambal-

aya tool: we conducted some studies to analyze how useful the various interface elements

were, and a heuristic evaluation was also done to identify some user interface challenges,

which helped to make the tool more usable. Neither approach, however, provided a clear

understanding of how the tool might support knowledge engineering tasks.

3.1.2 Requirements gathering

An examination of other visualization tools for knowledge engineering, and the require-

ments they were built to satisfy, revealed the lack of an established theory about user tasks

and the cognitive support they require. This examination is discussed in more detail in

Allen’s thesis [3]. Without this theoretical guidance, quantitative approaches—such as for-

mal user testing—would fail to reveal new requirements for such tools. Furthermore, Allen

identifies many difficulties encountered when performing user testing in the knowledge

engineering domain, including gaining access to expert users, generalizing results over dif-

ferent domains, and quantifying the knowledge acquired and used by such tools. These

issues led us to focus on more qualitative approaches which included a user survey, two

contextual inquiries, and investigation of related work; using these different techniques

provided a series of useful perspectives on the problem.

3.1.2.1 User survey

One of these approaches was to survey the general user population of the Protéǵe tool

and determine some of their preliminary needs for a visualization tool. This resulted in a

user survey which I disseminated to the Protéǵe user list and other knowledge engineering

lists [29]. The survey sought to determine the background of people interested in the area

of visualization for knowledge engineering, and received 44 responses. After some prelim-

3.1 Determining where cognitive support can help 30

inary questions designed to establish background, the survey asked what tasks respondents

carried out on their ontologies, and where they saw a graphical interface helping. I found

that there are a wide variety of users of knowledge engineering tools, as well as many do-

mains to which ontology engineering is being applied. Furthermore, the results indicated

that visualizationis a desired feature. The lesson for those working with tools which ma-

nipulate and create ontologies is that this diversity must be supported. I believe that the

wide-ranging degree of domains uncovered is a sign of the future, and that tools that oper-

ate at a meta level to assist users to understand the modeling decisions, such as Jambalaya,

will be increasingly important in maintaining clear communication and understanding.

3.1.2.2 Contextual inquiries

I used the survey as a pointer to areas where more detailed investigation might be use-

ful, and this drove the second aspect of the requirements gathering: contextual inquiries

at two separate venues. Contextual inquiry is a form of ethnographic research where the

investigator both observes and questions current work practices, alongside a user [11]. I

conducted one at the U.S. National Cancer Institute, discussed previously in§1.3. While

they currently are using a tool suite named Apelon (www.apelon.com), and not Prot́eǵe,

they had expressed interest in using Protéǵe, and in our implementation of Jambalaya. I

conducted two site visits to the NCI team to determine how their ontology engineering

workflow proceeded, and what some requirements for that workflow might be. Using con-

textual inquiry techniques, I sat alongside users to observe their daily activities. I also

conducted in depth discussions with the technical gurus and managers of the project, to

gauge their needs. The inquiry demonstrated a need for a number of mechanisms. One

user demonstrated a reporting tool, custom built, which showed an indented text-based lay-

out of the concept hierarchy and the associated relationships, designed to show “what this

branch [of the ontology] looks like”. Modelers also relied extensively on text searching

for navigation, using this mechanism to jump around the concepts. They also wanted to

define new concepts using existing concept definitions (i.e., make a copy and edit that), but

www.apelon.com

3.1 Determining where cognitive support can help 31

this was not supported. Another user used a third-party tool to model the concept textually,

and then added the concept using that external information. Finally, all users expressed an

interest in more collaborative, real-time modeling work.

My colleague Polly Allen conducted a site visit to the University of Washington Foun-

dational Model of Anatomy Project (seehttp://sig.biostr.washington.edu/

projects/fm/AboutFM.html). Here, she employed similar techniques to gauge the

needs of the users of that domain. While watching the users perform domain modeling and

verification, using Protéǵe-2000, she asked specific questions about the process, and con-

cluded with a demonstration of Jambalaya in its current form to gauge their reaction. From

this demonstration several important points of feedback were gathered on how the tool

could be changed to better suit their needs. For example, users demonstrated that knowl-

edge engineers would like to visualize not only the taxonomy hierarchy but the metamodel

hierarchy as well. Other users identified more support for editing being desirable, such as

the ability to ‘drag and drop’ concepts of interest onto a list on the side of the screen. It was

observed here as well that modelers spent a lot of time performing text searching opera-

tions. Finally, the modelers noted that errors in modeling were found about once every two

weeks, indicating that existing verification mechanisms were insufficient. Allen detailed

this visit in [3].

These two visits, in conjunction with the survey, as well as our previous work in soft-

ware engineering [81], gave me some specific data to form preliminary visualization re-

quirements for the knowledge engineering domain, in conjunction with a detailed literature

review, discussed next.

3.1.3 Background review

I conducted an extensive background review looking for discussions of user challenges in

knowledge engineering. Considering when and where the tool or method was first detailed

was important because, owing to a rapidly changing computer technology landscape, tools

that were not feasible 10 years ago have now become commonplace. For example, SemNet

http://sig.biostr.washington.edu/projects/fm/AboutFM.html
http://sig.biostr.washington.edu/projects/fm/AboutFM.html

3.1 Determining where cognitive support can help 32

[30] had interesting ideas for visualizations, such as fish-eye views, but the technology of

the time could not perform quickly enough. The implementations are now fairly common-

place. The implication is that previously discarded tools may now be worthwhile. Four

studies I discovered during our literature review were highly relevant and I discuss them

here. Other studies concerned user interface details, but often did not suggest specific areas

of concern or problems users encountered. The studies used are listed in ascending order

of the time period they cover.

During user studies of a Knowledge Acquisition system conducted by Tallis and Gil [84]

the experimenters observed users performing the following high-level tasks:

• Understanding the given knowledge acquisition task

• Deciding how to proceed with the knowledge acquisition task

• Browsing the knowledge base to understand it

• Browsing the knowledge base to find something

• Editing (create or modify) a knowledge base element

• Checking that a modification had the expected effects on the knowledge base

• Looking around for possible errors

• Understanding and deciding how to fix an error

• Recovering from an error by undoing previous steps (to delete or restore a knowledge

base element)

• Reasoning about the system

This study serves to detail some of the tasks that users go through while engaged in the

traditional knowledge engineering process. It also hints at some of the problems that an

otherwise valid knowledge engineering project may encounter if it fails to address the spe-

cific cognitive needs of the users. For example, a system which failed to provide simple,

usable methods for adding knowledge or looking for errors would be quickly rejected by

users without a large investment in the system (typically these would be the actual designers

of the system).

3.1 Determining where cognitive support can help 33

Blythe et al. [12] further identified some typical concerns that users may have when

adding new knowledge to an intelligent system. Some of these concerns were that the users

do not know where to start and where to go next, the users do not know if they are adding

the right things, and the users often get lost as it takes several steps to add new knowledge.

This study is interesting because it clearly shows that the standard knowledge engineering

methodology, consisting of the steps of modeling, acquiring, and verifying knowledge, fails

to accommodate the specific needs of users, even modelers in the domain. It is no use to

have a crisp and detailed methodology if users cannot easily make use of it in any one of

its stages.

Gary Kwok-Chu Ng conducted user studies as part of his Ph.D. research [62]. Based

on an evaluation of user requirements in ontology modeling tasks, he designed a tool, In-

foLens, to browse description logic ontologies, using a combination of ‘lenses’ which re-

vealed different information about the domain as they were interactively moved about the

model representation. He found that one issue was scalability for practical sized systems.

For cognitive support specific tasks, he identified the need for a tool to support information

integration (between different representations), to support the often cyclic task-switching

between navigation (around the model) and visualization (of a specific aspect of the model).

Initial user surveys were quite positive but some aspects of the implementation hindered the

evaluation. Despite these problems, Ng reports his tool was “effective in finding patterns

useful for modellers, with a few limitations in both scalability, flexibility and completeness

([62], p. 212)”. I analyze why these limitations occurred in§3.4. Ng also identifies the

same high-level tasks that I outline below in§3.2, although I use the term ‘modeling’ rather

than his term ‘authoring’.

Finally, Clarket al.[19] conducted studies of SHAKEN, a graphical tool for knowledge

acquisition. Although they only tested it on four users, and those users were not modelers

or knowledge engineers, I still present the results for the insight it offers into the benefit

of increased cognitive support. The users were able to enter a few hundred concepts into a

large medical knowledge base within a week, and also verify the model using competency

3.2 Knowledge engineering tasks requiring cognitive support 34

questions. From the discussion:

[the results suggest] the basic machinery works, providing a basic vehicle

for axiom-building without the users having to encode axioms directly (or even

encounter terms like “concept,” “relation,” “instance,” “quantification,” etc.)

. . . ([19], p. 8)

Some of the issues Clarket al. identify as areas needing improvement include multi-faceted

representations, active critiques from the system, and more expressivity in the interface

(such as temporal relations and conditions).

3.2 Knowledge engineering tasks requiring cognitive sup-
port

This section provides some of the motivation for functional requirements of knowledge

engineering tools. Functional requirements refer to specific knowledge engineering tasks—

such as knowledge acquisition, modeling, verification, and usage—that cognitive support

tools should address. I prefer to term these ‘tasks requiring cognitive support’, rather than

functional requirements, as the term requirements traditionally refers to domain and tool

specific needs, whereas what I term ‘tasks’ address high-level commonalities seen over a

range of knowledge engineering projects. There are also other, non-functional requirements

(variously known as effectiveness criteria, quality attributes, and constraints [59]), which I

discuss in§3.4.

My list of tasks where cognitive support is expected to be of most assistance is based on

four streams of research: 1) the detailed literature review of user interfaces to knowledge

engineering tools and papers on the few user studies that are available; 2) the qualitative

analyses from site visits to two large and well-known knowledge engineering efforts; 3)

our lab’s background in software program comprehension, as many researchers have made

the case that software engineering and knowledge engineering have many parallels (such as

[24], [23], [31], [46]); and finally, 4) my survey of ontology users identifying visualization

3.2 Knowledge engineering tasks requiring cognitive support 35

requirements and domain specific issues [29].

What follows is a non-exhaustive list of tasks in the knowledge engineering process

identified as requiring cognitive support; non-exhaustive, because they are based on my

experiences and research, in collaboration with other members of my lab. They could also

change depending on a variety of factors, including the domain of interest and user charac-

teristics. The objective is to present a fairly detailed list of problem areas that haveemerged

through the work my research colleagues and I have done over the past few years. Further-

more, this list is tailored, as mentioned above, to modelers working on the ontology. While

some of these may seem obvious, I wish to make them explicit. To indicate from which

research method these were developed, I use the following code:[s] for survey,[r] for

review,[pc] for program comprehension work, and[ci] for the contextual inquiries. Table

3.1, following this section, summarizes the findings presented below, and gives specific de-

tails on the origin of the requirements mentioned. I highlight three encompassing terms to

structure the taxonomy:navigation, modeling,andverification. These terms are intended

to organize the tasks into different sub-areas in the knowledge engineering process, and

are not exclusive. For example, navigation tasks may be performed during a verification

exercise.

? Navigation–support the navigation of ontologies for understanding, discovery, and

search

1. Provide overviews and support top-down exploration of the ontology([s] [r]

[pc] [ci]) – top-down exploration is most useful when people are unfamiliar

with the ontology. For example, in a meal ontology, users may start with the

higher-level concepts of ‘wine’ and ‘food’, and drill-down into more detailed

areas of the ontology. In large ontologies, in particular, this task could be highly

useful, because complex ontologies rapidly overwhelm the abilities of users to

make sense of where they are, and where they need to be. By providing an

overview, a cognitive aid can address some of these challenges. Often, top-

down exploration is goal-directed and based on a hypothesis. There is evidence,

3.2 Knowledge engineering tasks requiring cognitive support 36

from the software engineering literature, that navigation strategies often alter-

nate between top-down and bottom-up [81], and tools should support them. In

the case of modelers, this may occur when working with ontology merging, but

I have found no specific evidence to that effect.

2. Support slot-based browsing([r] [ci]) – Navigation should support follow-

ing hierarchical and network structures. In OWL, for example, slots may be

composed of other properties and classes using set-theoretic semantics such as

Union and Intersection. For example, one may want to see subclasses of Wine,

and then navigate to the regions those wines are produced in. The tool would

provide mechanisms to discover relationships that are not clear from the stan-

dard view of the model. Furthermore, a tool should show the user values for all

slots.

3. Allow users to view query results([r] [pc] [ci]) – in some cases, it is sufficient

to highlight the concept, but in other cases it may be important to show the user

what context the result is in, and perhaps why certain results were ranked lower

– to allow users to determine what they ‘meant’ by a search.

4. Provide a mechanism for saving, annotating, and sharing views([s] [r] [ci]) –

many times we noticed users wanting to share their recent work to show oth-

ers or save intermediate results. For example, it was noticed that many users

wished for a way to save intermediate modeling in the event that they were

forced to abandon it. At the NCI, since the elements in the domain of discourse

(cancer genetics) change so frequently, it was not uncommon for the modeling

staff to restructure entire subtrees. The modeler with chief responsibility for a

particular sub-ontology expressed a desire to share his intermediate efforts with

the other experts.

? Modeling – support modelers in their tasks of constructing the knowledge base or

ontology.

5. Provide graphical editing techniques([r] [pc]) – allow users to directly edit

3.2 Knowledge engineering tasks requiring cognitive support 37

concepts in an ontology. The tool should maintain the user’s context, allowing

them to see how the concept being edited relates to neighbours.

6. Editing navigation([ci]) – support for ”jumping” between two concepts as they

are being joined by a relationship during knowledge modeling. During obser-

vations of the FMA team, modelers were continually visiting several detailed

parts of a large ontology which were difficult to navigate between. For exam-

ple, theLung andChest Cavity concepts were in very different areas of

theis-a hierarchy, but needed to be joined directly by thepart-of relation-

ship. Creating and verifying that relationship involved using text searching to

switch between the two concepts.

7. Support ontology reuse([s] [r] [pc] [ci]) – allow users to quickly and easily

identify external ontologies and knowledge bases that may be useful, and di-

rectly include these in the model; furthermore, the namespace model that many

representations are using, based on the World Wide Web Consortium specifica-

tion, should be clear and explicit.

? Verification – support for the visual checking of a knowledge base’s structure, such

as the model-model and model-domain consistency.

8. Identify incoming relationships([pc] [ci]) – the tool should provide support

for the identification of a concept’s incoming relationships, or the lack thereof,

during model verification. It is difficult to identify such concepts that depend

on other concepts without doing text searches and navigating to each of the

results individually. This can be quite cumbersome if the interface does not

have specific support for such a task. For example, a modeler may wish to

know what concepts link to the one being examined, to determine what effect

changes will have. In frame-based systems, it is not difficult to detect outgoing

relationships as they are explicitly defined as part of the concept definition.

9. Incremental navigation([r] [ci]) – provide support for incremental navigation

of a knowledge base. A tool providing this would be able to show the modeler

3.2 Knowledge engineering tasks requiring cognitive support 38

all nodes which areN slots out from the central concept. Here, the concept is

clearly of interest, and the user wishes to start investigating from there.

10. Browse multiple and complex relationships at once([ci]) – the tool should

provide: complex relationship support, including support for understanding a

concept’s place in multiple relationships simultaneously, to help verify newly-

modeled concepts; and support abstraction of reified relationships. For instance,

the FMA modelers reify thepart-of relationship based on the ‘type’ of part

a concept is, such as anatomical or physical.

Category Task # Program
Compr.

Contextual
Inq.

Readings Survey

Navigation 1 x x (NCI, FMA) x ([19], [84],
[12], [62])

x

2 - x (NCI, FMA) x ([84],[12],
[62])

-

3 x x (FMA) x ([12]) -
4 - - x ([19], [62]) x

Modeling 5 x - - x
6 - x (FMA) - -
7 x x (NCI, FMA) x ([19], [12]) x

Verification 8 x x(NCI, FMA) - -
9 - x (FMA) x ([62]) -
10 - x (FMA) - -

Table 3.1. Research methods used to derive tasks requiring cognitive support.

3.2.1 Summary

Table3.1succinctly describes the list of tasks I have identified, as well as their provenance.

Task numbers refer to the description given above. Anx indicates the task was deter-

mined from that research method, and parentheses indicate the origin (literature reference

or project). While not necessarily complete, this list of tasks serves as a useful model for

conducting analysis of tools supporting the knowledge engineering process. The follow-

ing section applies this analysis to a specific set of tools, those providing advanced visual

3.2 Knowledge engineering tasks requiring cognitive support 39

interfaces for Prot́eǵe.

3.3 Approaches to cognitive support 40

3.3 Approaches to cognitive support

Many tools already support some of these areas I have identified. Protéǵe itself provides

extensive cognitive support for navigation, modeling, and verification tasks, otherwise it

would not be as successful as it is. As mentioned in§1.3 and in more detail in§2.2.3, I

have chosen to focus on tools which provide cognitive support using information visualiza-

tion to construct an advanced visual interface (as well as using core Protéǵe as a baseline

reference). The recently released Ez-Owl tab, described briefly in§2.2.2, does allow edit-

ing, but I did not examine this in detail because it is focused solely on OWL ontologies,

which have different semantics from the frame-based ontologies with which these five tools

work.

General knowledge engineering tools were mentioned in§2.2.2. What follows is a

detailed analysis of the existing visualizations provided in Protéǵe at the time of writing,

and a summary of the essential features of each tool. Next, each tool is evaluated using

the tasks identified in§3.2 and Table3.1; Table3.2 summarizes these findings. To show

examples of each tool, a well-known ontology is used. This ontology describes the do-

main of wines, first used in a paper describing the CLASSIC knowledge representation

system [14], and now also in other examples, such as the Web Ontology Language guide

(seehttp://www.w3.org/TR/owl-guide/).

3.3.1 Prot́eǵe core

Prot́eǵe itself has a fairly standard indented tree view interface, as shown in Fig.2.2.

Users can navigate the class tree by opening and closing class concepts, or by using a

search panel located at the bottom of the screen. This default view supports several of

the tasks I identified, including top-down browsing (task #1) and search visualization (task

#3), to varying degrees. The chief limitation of the default Protéǵe interface makes it very

difficult to grasp more complex relationships, such as multiple inheritance or complex slot

compositions (as used in reification). Particularly interesting is the lack of support in core

http://www.w3.org/TR/owl-guide/

3.3 Approaches to cognitive support 41

Figure 3.1. Instance Tree tab for Protéǵe, supporting slot-based browsing

Prot́eǵe for the verification tasks. No methods are provided, for example, to understand

complex relationships, or to see dependent concepts for a particular artifact of interest.

3.3.2 Instance Tree widget

This tool (shown in Fig.3.1) extends the default Protéǵe interface. It allows users to browse

through the classes using the slot values (related classes) defined in a particular concept,

providing a means to perform slot-based browsing (task #2), as well as navigating between

nodes during editing (task #6). Some support is also provided for navigating to arbitrary

levels in the hierarchy. As a plug-in for Protéǵe, the widget leverages the other capabilities

of Prot́eǵe to handle more complex tasks.

3.3.3 Ontoviz

Ontoviz [75] relies on the GraphViz graph viewer to visualize ontologies in Protéǵe (see

Fig. 3.2). Exploring the ontology is very difficult in Ontoviz, as the user interactions are

restricted to panning and simple zooming (navigation tasks for top-down browsing (task

#1)). Furthermore, OntoViz does not support more than one layout, which can only be

based on the inheritance relationship. Presentation customization (a concept described in

3.3 Approaches to cognitive support 42

Figure 3.2. Ontoviz plug-in for Prot́eǵe, showing a portion of the wines ontology

§2.4) is limited and the visualization does not scale beyond a few hundred entities. Ontoviz,

as shown by the task support it provides, lacks the support typical of more interactive tools;

for example, one cannot browse multiple relationships.

3.3.4 TGVizTab

First released in 2002 by Harith Alani [2], TGVizTab (Fig. 3.3) makes use of a spring-

embedding algorithm [33] to implement a customizable layout for concepts and relation-

ships. The true strength of TGVizTab lies in its salience. The graph shown is typically

readily apparent to users. Some of the weaknesses of TGVizTab concern the difficulty of

seeing all relationships (e.g., non-structural relationships), screen clutter, and the difficulty

in synchronizing this view with the Protéǵe view. TGVizTab does support showing search

results, and is excellent for incremental browsing of the ontology. The user can easily turn

on or off certain nodes and arcs for an exploration of interest. It is not great at top-down

3.3 Approaches to cognitive support 43

Figure 3.3. TGVizTab plug-in for Prot́eǵe, using a hyperbolic layout on the wines ontology

exploration, because the graph is fairly unordered. One can save views, but only in the

Touchgraph (XML) format.

3.3.5 Jambalaya

Jambalaya [80], developed by my research group and shown in Fig.3.4, is a suite of tools

and views for viewing ontologies with graph metaphors; there are several different mecha-

nisms for viewing data in Jambalaya. As mentioned, Jambalaya uses a graphical language

based on the mathematical theory of graphs to map from the Protéǵe meta-model (based

on frame-based knowledge representations) to a visual representation. Jambalaya provides

several different mechanisms supporting navigation tasks, although browsing search results

is not always simple. Like the other tools, Jambalaya has little or no support for editing

tasks. In the verification tasks, Jambalaya does fairly well; one can abstract information

and search for arbitrary levels of interest, and identifying incoming relationships is easy as

3.3 Approaches to cognitive support 44

Figure 3.4. Jambalaya plug-in for Prot́eǵe, showing the concepts and relations in the
wines ontology

well. While there is no support for incremental navigation, there is rudimentary support

for complex relationships: one can see which hierarchies a node belongs to, but there is no

support for reification.

3.3.6 Summary

Based on the areas where cognitive support is required (as listed in§3.2), I conclude certain

things about the five tools examined. The tools do not support editing tasks, particularly

graphical modeling; this probably reflects the focus on ontology understanding these tools

have. While all tools provide different but complementary approaches to navigating and

verifying domain models, the lack of certain cognitive support hinders the usefulness for

real-world users. Table3.2outlines the cognitive support offered by the five tools.

3.4 Evaluating cognitive support using design goals 45

Category Area of Cognitive
Support

Protéǵe Inst. Tree Ontoviz TGViz Jamb.

Navigation 1. Overviews x p x p x
2. Slot-based brows-
ing

p p - x x

3. Show queries p - - x p
4. Save views - - x p x

Editing 5. Graphical editing x - - - -
6. Editing navigation - x - - -
7. Ontology reuse p - - - -

Verification 8. Incoming relations - - x x x
9. Incremental navi-
gation

- x - x -

10. Multiple rela-
tions

- - - - p

Table 3.2. List of Prot́eǵe and its extensions evaluated against knowledge engineering
tasks. Anx indicates the support was provided in that tool, ap that there was partial
support, and a dash that there was no support.

3.4 Evaluating cognitive support using design goals

I described some tasks in knowledge engineering which require cognitive support and out-

lined them in Table3.1. I then examined the cognitive support that was provided by a

popular knowledge engineering tool, Protéǵe, and some of its related extensions (as shown

in Table3.2). This section presents some thoughts on how designers can evaluate the po-

tential cognitive support in a particular tool (and for a particular domain).

3.4.1 Trade-offs in the design process

Non-functional requirements ([59], [13]), also known as quality attributes, constraints, and

effectiveness criteria, are high-level objectives such as scalability, usability, and customiz-

ability, which can be thought of as goals which guide the design of features in a system, par-

ticularly in terms of what support is provided for the functional requirements or tasks [18].

These goals are often conflicting, in much the same way as design goals for knowledge

3.4 Evaluating cognitive support using design goals 46

representation languages are. For example, just as language designers must balance the

goals of expressiveness and tractability, designers of cognitive support tools for knowledge

engineering must balance scalability and usability. As such, design of these tools can be

thought of as a series of trade-offs and architectural decisions which attempt to balance

these goals. Choosing which goals to focus development efforts on involves a series of

choices about which goals are more important to the tool, as well as any domain-specific

needs. The level of focus determines to what extent each goal is met, or at least, to what

extent the developers care about it (as it may not be met). Goals exist on a continuum, with

a range of concerns possible.

Some examples of such trade-offs are listed in [1], which details certain trade-offs that

visualizations of knowledge-based systems have to contend with. These trade-offs cover

both functional task requirements and non-functional design goals of the tool. For instance,

a tool should providehuman readableand comprehensible information and views, while

still allowing for semantically rich,machine-processabledata. Both can be considered

functional tasks the tool needs to address. Showing sufficientlocal detail while still giv-

ing the user adequateglobal contextrequires that designers understand what focus their

tool will have for these functional tasks—customizability is an important consideration for

this trade-off. In a similar vein, a tool should give anoverviewto abstract the underlying

complexity, but sometimes that complexity is necessary and essential. Sometimes what

is important is thestructureof the model; at other times, thecontentis more important.

As mentioned in§3.4.6, users typically want systems which can handle large problems—

scalability—but can still maintain adequate response times (usability), again a trade-off

in design goals. A system should also maintain itsflexibility to support the user’s unique

mental approach to his task, but it should strive to maintainconsistencyas well - for ex-

ample, always showing key elements at the same locations. This represents a trade-off in

non-functional design constraints and must be decided based on the domain the tool will

address. Finally, another non-functional trade-off is that in some cases,known metaphors

are easily understood and most usable, but at times onlyinnovative approachescan address

3.4 Evaluating cognitive support using design goals 47

the task.

These design trade-offs illustrate the complexity of designing a tool which provides

cognitive support for knowledge engineering tasks. Not only should those tasks be iden-

tified and supported, but developers must keep in mind the non-functional goals of the

tool, such as how well it scales, whether it can be adapted, and how usable its interface

is. Clearly, this set of factors produces a large number of solutions which can be created.

Based on the findings of this thesis, I believe that in practice a well-designed tool, with

a carefully determined set of functionality, will be able to accommodate many disparate

domains and users.

3.4.2 Five important design goals

To elaborate on what these goals consist of, I’ve chosen five of the most important goals

discussed above. The next section explains them and how they impact the provision of

cognitive support in knowledge engineering tools. These goals are:

• Usability

• Learnability

• Expressivity

• Scalability

• Customizability and extensibility

I refer only to how Jambalaya meets these goals in this section, although they could be

applied to all the tools I have looked at. There is no definitive list of non-functional re-

quirements, as this is antithetical to what they represent—domain specific goals that are

often only identified as the system is implemented (suggesting an iterative, spiral model

([13]) of development might be best).

3.4 Evaluating cognitive support using design goals 48

3.4.3 Usability

An important criteria is that of usability, which supports users staying ‘in the flow’ [7],

that is, staying on-task and not being unnecessarily distracted with interface issues. Usabil-

ity affects tools by constraining the complexity and variety of metaphors and techniques

a tool can use to provide the cognitive support; there is often a direct relationship be-

tween scalability and usability. Usability is best assessed by conducting user evaluations.

Jambalaya has made some strides towards improved usability, including some preliminary,

unpublished user studies, a heuristic evaluation of the interface, and informal evaluations.

Neglecting usability as a design goal often impacts tool use—preventing users from access-

ing the task-specific functionality, and thereby, the cognitive support we aim to provide.

Eisenstadtet al., in [24], also mention some usability principles for knowledge engineering

tools, including ensuring there is mapping between what is shown and what is present in the

model, and that all views should be coupled so that changes in one are shown in the others.

They also mention that tools should be able to abstract and switch views, and objects in a

view should be manipulable.

3.4.4 Learnability

This design goal focuses on making the key tools and functionality in the application readily

apparent. Whereas usability is focused on making the tool itself easy to use, learnability

requires that the functions that will most help a user be salient and visible (also mentioned

in [24]). For example, in the NCI domain, a useful visualization in Jambalaya is to perform

a spring layout on thehas-biological-process relation, which shows which genes

or proteins play roles in biological processes. Jambalaya does not make this powerful

visualization apparent, since its design was focused more on the expressive power of the

tool. Learnability is also related to the customizability of a tool, since, as demonstrated,

different domains and different users will have various sets of functionality which would

be most useful.

3.4 Evaluating cognitive support using design goals 49

3.4.5 Expressivity

Expressivity has typically been used in the sense of formal languages, such as first-order

logic, to denote what the language can represent. In tools with user interface compo-

nents, such as the ones discussed here, expressivity refers to what aspects of a model can

be represented in the tool (refer to [19]) for another example). Eisenstadtet al. call this

completeness—a tool should ideally show all implications of a model (and only those im-

plications). Expressivity often has an inverse relationship with scalability. For example,

showing all statements that are implied by a description logic language may not even be

computable, so tools working with, for example, OWL ontologies, need to be aware of

these constraints. In Protéǵe, there is also a notion of system classes, which are meta-

objects used to construct a domain of discourse. Initially Jambalaya did not represent these

objects, yet they can have major implications for modelers: the FMA project, for example,

uses metaclasses extensively (see§3.1.2.2). Jambalaya now addresses the non-functional

goal of expressivity by allowing users to determine whether they wish to see these classes.

This improves the potential cognitive support of the tool by offering more features to match

tasks the user may have. However, it is still not clear to us how to support the user in know-

ing which concepts to render in a visualization.

3.4.6 Scalability and responsiveness

A very important criteria in many tools in the knowledge engineering domain is scalabil-

ity, the ability of a tool to handle large problems. A user will not see adequate cognitive

support if a tool cannot deal with the problem of interest, which may be quite large; the

NCI ontology consists of approximately 40,000 concepts. We are working on improving

the responsiveness of Jambalaya so that using it with reasonable sized ontologies (currently

around one hundred thousand artifacts) does not affect one’s work patterns. We are also

examining how different visualization metaphors and toolkits can be used to rapidly visu-

alize changes between versions of ontologies (to better support navigation and verification

tasks). Jambalaya provides a range of views that the user can select from, rather than one

3.4 Evaluating cognitive support using design goals 50

or two metaphors. The reason we focus less on innovative views on the data is that we

believe that the techniques are not the major hurdle in people’s use of the tool; often, the

issue is related to one of the design goals I have discussed, such as scalability or usability.

Scale can have a negative impact on how a metaphor is used, and much of the design chal-

lenge lies not in determining what useful metaphors might be, but rather, in how to adapt

metaphors for different problems (for example, by using abstraction techniques).

3.4.7 Customizability and extensibility

Users differ, even within themselves. Thus, providing cognitive support to users requires

addressing this variability. Thecustomizabilitycriteria measures how well a tool allows an

end-user (in this domain, a modeler) to tailor a tool’s functional support to his or her needs.

It is very difficult for designers to determine what cognitive support for which tasks is nec-

essary in all cases. Jambalaya partly addresses the customizability goal with rudimentary

scripting support to provide access to the application domain. This customization may take

the form of hiding additional complexity that is not needed, by removing unwanted tools

or views, or by writing custom scripts. In the next chapter, I describe a prototype imple-

mentation of customization support in Jambalaya. A user-modifiable ontology describes

the Jambalaya tool domain (the set of visualizations, tools, and elements in Jambalaya) and

allows the application to be customized by either end-users (modelers at the NCI, for ex-

ample) or their technically proficient colleagues (who could be termed Customizers [55]).

Our research group is also interested in making Jambalaya itself more flexible at the

source code level by adding some form of extension points, similar to the extension features

Prot́eǵe currently offers. This could allow, for instance, other teams to develop plug-ins for

Jambalaya that offer new views or layouts. We would like to take some ideas from the

CODE4 tool mentioned in the background section, such as fully separating what is being

viewed from how it is viewed, and incorporating non-graph visualizations. While CODE4

did not support an extensibility goal, incorporating its notions of model and view separation

will provide a powerful way of addressing extensibility in Jambalaya.

3.5 Summary 51

3.5 Summary

I have explored various tools and how they addressed cognitive support. I then proposed

some design goals for these tools such as scalability, expressivity, and learnability, men-

tioning that implementing these goals involves trade-offs. When adoption is used as a met-

ric for successful design, the design goal that can make the biggest impact in knowledge

engineering tools is that of customizability.

Focusing on customization has one main advantage. Despite some commonalities, such

as the need for slot-based browsing, editing support, and incremental navigation (refer to

§3.1), individual domains require subtle yet important changes to standard functionality.

Visual interfaces are difficult and time-consuming to construct. In order to have a realistic

chance of being adopted, this design must be done on a case by case basis. For exam-

ple, the visualizations needed by the NCI team will be different than those needed by the

Foundational Model of Anatomy team. The FMA modelers need a tool which can show

complex relationships between meta-model and model, a tool which shows modeling er-

rors of commission or omission. While requiring similar task support, the NCI modelers

are more interested in the location of new concepts in the hierarchies. This distinction

involves differences in the degree to which a tool supports specific tasks.

The notion of domain-dependent tasks may seem to contradict my earlier suggestions

that there are certain tasks common to knowledge engineering which all tools should sup-

port. However, this is not so. While there are tasks common to all projects, such as top-

down navigation or slot-based browsing, it is in the details ofhowthese tasks are supported,

and, as mentioned in the preceding chapter, to what degree design goals are examined, that

determine what a tool will look like, and to what degree it will be adopted.

Considering customization as a high-priority design goal allows tools to address these

different degrees of interest, without having to make these decisions at design time. For ex-

ample, incorporating mechanisms to support feature selection and enhancement allows the

tool to be tailored to individual domains. A prototype implementation of this is discussed

3.5 Summary 52

in the following chapter.

Chapter 4 – Implementing and
evaluating customization support in
Jambalaya
Customization support removes or at least reduces the need for the tool Designer to make

guesses and generalizations about the requirements for a particular domain. An example of

a Designer would include the developers of Jambalaya or Ontoviz. Instead, customization

allows a local expert to make these decisions. This chapter details the steps involved in

making changes to Jambalaya in order to implement such customization support, and then

validates this particular approach using experience reports from domain experts.

4.1 Modeling Jambalaya

While Jambalaya fulfilled many of the areas mentioned in the survey of cognitive require-

ments in knowledge engineering, the rich set of functionality it provides remains largely

inaccessible to the majority of users because such features are often hidden behind a com-

plex user interface. Furthermore, as developers, the Jambalaya team are not experts in all

the domains the tool is used in; these domains have different needs and tasks, as shown by

the site visits and surveys. In order to outline how these different needs might be addressed,

a prototype of a customizable form of Jambalaya was designed and implemented. Just what

is meant by customizable in this case will be defined in this chapter. It is important to note

that this approach does not add more functionality to Jambalaya, because lack of features is

not an issue for this tool. This section details how I implemented customization features in

Jambalaya. Other papers address modifications to Jambalaya to address other design goals

such as scalability [49] and extensibility [10].

4.1 Modeling Jambalaya 54

4.1.1 Customization in Jambalaya

Customization has many definitions. It is possible to consider customization from a variety

of scales, from the smallest (being able to change the language of a dictionary the system

provides) to the largest (providing options to completely reconfigure the entire application).

In this paper, I defined customization as involving non-source level changes made for or by

a user, and extensibility as being source-code modifications typically made by a developer.

Customization in this sense refers to changes to either the data, the functionality, or the

presentation of a tool, as described in§2.4.

For example, while using the Jambalaya tool, the developers noticed they frequently

changed from its default view (nested nodes using theis-arelation) to a tree layout showing

the is-a relation. This action suggests a simple and obvious presentation improvement that

would help the usability of the tool (and hence, improve its cognitive support). This shows

that offering customization opportunities seems to improve domain-specific tool usability

and, in so doing, improves cognitive support for the knowledge engineer. The reason this

thesis is not a simple usability study is because, as described in other chapters, I do not

propose that I can even identify such problems in many domains. The preceding usability

problem was discovered only after long use of the tool in our research lab, and there is

no such detailed study in other domains. The appeal of a customization approach is that

Designers can provide to domain users (Customizers, in the terminology of [54]) the power

to make such changes themselves, just as the Designers do as they come to understand it.

Using the Jambalaya source code, I modified the application to support simple cus-

tomizations, consisting of presentation customizations in the form of specifying initial

views on the graph, and functional customizations in the form of feature selection and

addition. To model the possible customizations in Jambalaya, an application ontology was

created to describe the possible customizations. An application ontology uses a formal

knowledge representation to model the concepts in the Jambalaya tool domain, and is de-

tailed below. To construct the ontology, I make use of the ontology construction steps

outlined in Noy and McGuinness [64] and discussed in§2.1.1.1.

4.1 Modeling Jambalaya 55

4.1.2 Step 1. Outline the domain and scope of the ontology

The customization support in Jambalaya takes the form of an ontology, written in Protéǵe’s

representation format, that describes the entire set of graph manipulations and tools that

Jambalaya provides, and allows Customizers to modify the ontology directly. These modi-

fications take the form of new instances added to the ontology which merge the Jambalaya

application model and the domain-specific ontology. These changes are then reflected in

the Jambalaya tool on start-up. For example, one thing users may want to do is to set a

new default view, which is possible with this tool. To decide what to include in the frame-

work, I iterated over the ontology with other developers working on the tool to determine

the entire set of features and tools Jambalaya provides. This is a valid approach because

only the developers at our research lab truly understand the set of features Jambalaya has.

I term this Jambalaya ontology the Customizable Visualization Framework (CVF) ontol-

ogy. The term CVF properly refers to the combination of the ontology/domain model with

Jambalaya code enhancements to produce a customization solution for Jambalaya.

Noy and McGuinness also suggest composing ‘competency questions’ about the do-

main, in order to verify how true the model is to reality. I have not used this approach

because I believe the utility of the tool will best demonstrate how well the model was con-

structed. That is, if the model failed to capture salient features of Jambalaya, that should

present itself as a failure to accomplish some task using the CVF.

Another critique of this approach is that it could as easily be accomplished using a sim-

pler set of configuration options, perhaps consisting of a simple XML file and a Document

Type Definition (DTD) or XML Schema. For the current functionality of the CVF, this is

certainly a valid comment. However, there were two motivations for deciding to use an

ontology. On a practical level it is much easier to use an ontology because that is what

Prot́eǵe supports, and therefore no extra processing was required other than that provided

by Prot́eǵe. More importantly, though, I wished to allow for the possibility that this ontol-

ogy could be extended and modified as Jambalaya changed. An ontology is the best way

of capturing the complexities of this tool.

4.1 Modeling Jambalaya 56

4.1.3 Step 2. Consider other ontologies

Norman [63] defines three models of how a system works (where system is any external

device a human can interact with). The designer has a mental model of how it should work,

the user has a mental model of how the system is working, and the system itself has a model,

which he terms the system image, of what is actually happening (reality). This is shown in

Fig. 1.1. Most software has some form of model, whether it is formally specified or not (see

§1.3). For example, the Unified Modeling Language is a formalism that represents software

artifacts in a standard manner. Various systems, such the Model-Driven Architecture ini-

tiative (seehttp://www.omg.org/mda/) and its implementations such as the Eclipse

Modeling Framework (seehttp://dev.eclipse.org/viewcvs/indextools.

cgi/˜checkout˜/emf-home/docs/overview.html), aim to use formal models

to design software systems. These describe design-time approaches, whereas this ontology

is capturing knowledge about an existing system, one not constructed with a formal model

we can rely on.

Furthermore, the models made to design a system often fail to capture detailed infor-

mation about user interfaces, leaving these for implementation decisions. However, this

is vital to the information the CVF ontology must capture. Some other research has been

done into modelling an application’s ‘beliefs about the world’ using ontologies, for ex-

ample, [45]. There is no one way of capturing an application’s ontological commitment,

though, since, as shown in Fig.1.1, the designer’s model can never completely match that

of the system image. As such, I feel the somewhatad-hocmodeling performed on Jam-

balaya is best validated by expert analysis, in this case, using the other developers. Since I

provide the ontology describing the tool as well, the schema can be altered at any moment

to reflect new classes or relations between classes.

4.1.4 Step 3. Enumerate important terms in the ontology

Modelers use this step to make an exhaustive listing of the concepts in the domain. Hav-

ing used Jambalaya for several years, I was intimately familiar with its feature set. I went

http://www.omg.org/mda/
http://dev.eclipse.org/viewcvs/indextools.cgi/~checkout~/emf-home/docs/overview.html
http://dev.eclipse.org/viewcvs/indextools.cgi/~checkout~/emf-home/docs/overview.html

4.1 Modeling Jambalaya 57

:view elements
node
arc

grouped arc
grouped node

:layouts
force-directed

spring
nested

alphabetically
number of children?

space-filling
treemap

Table 4.1. Sample enumeration of elements in Jambalaya

through all the potential tools and elements in Jambalaya, as well as the interaction ele-

ments the tool has (such as buttons and menu items) and proposed a list, similar to that

shown in Table4.1.

4.1.5 Step 4. Define the classes and the class hierarchy

Having enumerated the possible terms in the domain, I now structured them into a class and

instance hierarchy using my domain knowledge. This process is by no means simple, and

there are modeling decisions to be made at nearly every step. I began with a top-down ap-

proach to the problem, taking the central aspects of Jambalaya and then decomposing those.

My top-level classes are the tool itself, modeled as “ShrimpApplication - ShrimpProject

- JambalayaProject”, so named to reflect the nature of Jambalaya as one product in a line

of similar tools (see [10] for more details); and “User”, identifying the people who use

the tool. For the application itself, there are the five high-level organizing classes: “Ac-

tions”, “Scripts”, “Layouts”, “View Elements” and “InterfaceElements”. There is also a

class termed ‘Future’, which is a useful place to store elements of Jambalaya which may

be developed in the future.

I now explore each of these in more detail, but as the purpose of this thesis is the

4.1 Modeling Jambalaya 58

customizations, and not Jambalaya itself, I refer the interested reader to our work on Jam-

balaya, published in [28] and [80]. Detailed explanations are available online athttp:

//chiselog.chisel.cs.uvic.ca/manual .

4.1.5.1 Actions

Actions in Jambalaya refer to things the user can do with the interface to make something

happen. For example, clicking a button or selecting a menu item both cause an action to

occur. Actions are distinct from the interface element that caused them. There are two

action subtypes, filters (Arc and Node) and navigation actions (Back, Forward, Home), as

well as direct instances. The actions I’ve modeled in Jambalaya include the Attribute Panel,

Filmstrip, Options Panel, Help, Bookmarks, Hierarchical View, Thumbnail View, TreeMap

View, Snapshot, Script Manager, and Search. It should be noted that many of these ‘actions’

are represented by buttons and menu items in the default Jambalaya interface. Although

actions should always be associated with these UI elements, I found it too cumbersome for

a Customizer to have to add both a button and the corresponding action. Therefore, when

manipulating a user instance as part of the customization process, actions are added and

removed, not buttons and menu items. Jambalaya implicitly associates actions with menu

items and buttons, so removing an action will force the related button or menu item to be

removed as well.

4.1.5.2 Layouts

Layouts are operations on the graph-structured data Jambalaya uses. For example, using

a relation to traverse the graph, we can direct the tool to place nodes down the screen in

a parent-child pattern, producing a tree (possibly a series of trees, or forest). Typically,

and this is shown in the standard Protéǵe interface, the relationship used is the inheritance

hierarchy, which we term the ”– is-a –” relationship. There are four categories of layout

used in Jambalaya: force-directed layouts, using a modified Spring layout; tree layouts,

including vertical, horizontal, and radial trees; space-filling layouts, currently using the

http://chiselog.chisel.cs.uvic.ca/manual
http://chiselog.chisel.cs.uvic.ca/manual

4.1 Modeling Jambalaya 59

TreeMap algorithm [74], and a nested layout, where nodes are placed within other nodes

to indicate a relationship; and grid layouts, where nodes are ordered in a grid according to

name, number of children, number of relationships (outgoing), user-specified attribute, or

node type. Not otherwise classified is the UML layout, designed to mimic the style and

conventions of UML.

4.1.5.3 Scripts

Jambalaya also supports end-user programming with a scripting engine. This engine takes

a text listing of Jambalaya specific interaction commands, such as ”select node x”, and

the actions and layouts described above, to perform a series of commands without further

user input. The current scripting language used is Javascript, a popular language used most

commonly in World Wide Web applications. Scripting allows users, particularly expert

users, to represent a common set of navigation and interaction tasks with one action, and

then to share this with others. An area of future work is to explore making this process

more automatic, much like a macro in common word processors. This concept is broken

into System and User scripts, the former representing scripts the developers feel have some

commonality across domains, the latter for scripts most useful for this particular applica-

tion.

4.1.5.4 View Elements

The View Elements concept describes the components on the screen in a Jambalaya view,

broken into Nodes, Labels, and Arcs. Labels are associated with nodes, in particular, but

could conceivably be used with arcs as well. They are given first-order status to indicate

their importance to non-functional design goals such as scalability. Associated with Labels

are Label Options, which allow users to specify how the labels are shown. Arcs and Nodes

have similar children concepts. Both have a Grouped(Arc/Node) concept, to reflect the

ability in Jambalaya to concatenate several elements into one abstract representative. Both

also have a System(Arc/Node) concept, reflecting the meta-modeling facility of Protéǵe.

4.1 Modeling Jambalaya 60

Finally, the arc concept has a sub-concept ReifiedArc to allow users to represent which

arcs in their ontology may use reification. Reification allows complex relationships to be

modeled as concepts themselves.

4.1.5.5 Interface Elements

Interface elements are components of the UI that users interact with. These typically reflect

programming language divisions (in this case, Java’s Swing libraries). I have modeled it

with three categories: menus, buttons, and icons. Menu bars have individual menu items,

and button bars likewise have individual buttons. Menus and buttons have icons, and as-

sociated actions (described above). The inclusion of this set of concepts is not strictly

necessary to implement customizations, as it would be sufficient for the user to specify

the actions and layout he or she wants; the mechanics of this are detailed in§4.3. These

concepts were included to attempt to present as complete a model as possible, and reflect

an underlying struggle in this model: whether to construct a complete domain ontology of

Jambalaya, or focus on an ontology which serves (current) customization issues. For exam-

ple, it is conceivable that the CVF will be used in future to drive Jambalaya’s development

in an MDA-style tool; in that case, a complete ontology is necessary.

4.1.5.6 Not included or future work

A portion of the ontology is dedicated to future implementations, as well as elements of the

Jambalaya UI that did not have a bearing on the customizations as currently implemented.

For example, our potential additional actions, such as a concept explorer (to support slot-

based browsing) is included here, as is the ability to change the hierarchy, label options,

and navigation mode from a bottom toolbar. The concept of navigating using a fisheye,

zoom, or focus mode was not included in this first version of the ontology for simplicity.

They would be added in a more complete revision. As well, navigation is a user-specific

task which is difficult even for a Customizer, who presumably knows the User well, to

ascertain.

4.1 Modeling Jambalaya 61

4.1.5.7 User concepts

Also included in the ontology is a notion of user types. This serves to distinguish between

users who are End Users, and those who require more functionality, like the Customizer or

Designer. Since it is up to the Customizer to define the different instances of users, this set

of classes currently serve as place-holders. A set of sample instances for each class provide

guidance to potential Customizers, giving an example to follow. Specifying a user is shown

in §4.3.

4.1.6 Step 5. Define class properties

There are several slots, or relations, that are part of the CVF, and serve to relate the various

components of Jambalaya to the user specific customizations. I describe these relationships

and give examples of how they are used.

• allowed layouts - relates a user instance to multiple layout instances, indicating

which layouts the user should be allowed to use.

• allowed tools - the tools or actions a particular user can access.

• displayslots - the relationships in the domain ontology to show on first displaying

Jambalaya for this user.

• hascollection - a means to model a collection of elements (an integral part of the

RDF specification), denotes a set of elements to use for this ontology, though not

currently. For example, what set of nodes make up a Grouped Node.

• haselement - denotes the elements a particular layout should operate on. Not cur-

rently used, this option would specify that a certain layout shouldonly use the ele-

ments it is defined for.

• hasicon - maps a button to an icon instance.

• hierarchy - Used to refer to the nesting relation when the Nested Layout had a special

status.

4.2 Implementation 62

• loaded - a boolean relationship for a user instance, used to indicate whether this

particular instance should be loaded

• location - a substitute relation for the RDF concept of URI, this slot indicates where

something can be found, for example, where a script is defined.

• initial layout - defines which layout to begin with for a particular user.

• slot to neston - defines which relation to use as the structural relation at first

• usescript - maps a custom user action to a particular script to run when that action is

run.

• usesbuttons - defines which custom buttons to load for this user.

4.1.7 The CVF ontology: summary

Figure4.1 shows an overview of the CVF ontology, with the user component in the top

right corner. Instances have been excluded for clarity.

4.2 Implementation

Once I had decided on a suitable model of Jambalaya, this model was created using Protéǵe.

Once this was complete, the ontology needed to be integrated into Jambalaya in order to

realize the customizations the user would create.

4.2.1 Creating the ontology

Using Prot́eǵe, I first attempted to create the CVF project in OWL format, previously de-

scribed in§2.1.2. The motivation for using OWL was that it provides URI support, names-

paces, and the other advantages of Semantic Web technology, as well as being the direction

most ontologies seem headed. Using the CVF as a project a developer could include it us-

ing Prot́eǵe to leverage OWL’s inclusion mechanisms, to offer extra definitions (Jambalaya-

specific extensions to his own model). Using OWL would also allow the framework to be

4.2 Implementation 63

Figure 4.1. Jambalaya view showing the CVF ontology as a horizontal tree

4.2 Implementation 64

imported for other tools which Jambalaya might support in the future (i.e., it isn’t tool-

specific). I ran into difficulties with OWL support in Protéǵe as the development of the

tool was ongoing while I was developing the ontology. I moved to Protéǵe’s default stan-

dard text file with the intention of switching back to using OWL when the plug-in matures,

which is anticipated by February 2004. Once this was determined, it was straightforward

to implement the class structure defined above.

4.2.2 Integration with Jambalaya

Having constructed an ontology which mapped the properties and concepts of Jambalaya,

the CVF now needed some way to determine what the user had specified, and customize

Jambalaya accordingly. One option would have been to add a rule engine to Jambalaya,

such as Algernon (seehttp://algernon-j.sourceforge.net/doc/algernon-

protege.html). This extension provides forward and backward chaining and querying

processes on the ontology. Algernon is implemented for frame-based knowledge represen-

tations, so implementation in OWL would require the use of an OWL inference engine such

as FaCT [44], as well as the support of a query language (none are as yet defined strictly

for OWL, but there are several for RDF, the syntactic underpinning of OWL).

Rather than tie the CVF to one specific rule engine or query language, I decided to

customize the Jambalaya source code to handle cases where an CVF ontology is loaded.

For example, when Jambalaya is added to the Protéǵe UI, a search is made for the included

CVF ontology. If this is found, the extensions to the source code begin assessing which

options the modeler specified, and loads the tool accordingly. There are three main cate-

gories of the tool the modeler can customize: 1) the starting view and tool that Jambalaya

uses, such as which layout to perform, which nodes to show, and which relationship to

use; 2) which actions the user should have access to, such as Help menu items, or different

types of layout; 3) custom actions, created using Jambalaya’s scripting engine to run a set

of commands to produce a view.

http://algernon-j.sourceforge.net/doc/algernon-protege.html
http://algernon-j.sourceforge.net/doc/algernon-protege.html

4.3 Interacting with the CVF 65

Figure 4.2. Including the CVF ontology in Protéǵe. The faded letters for the CVF classes
indicate they cannot be modified

4.3 Interacting with the CVF

How does one use the CVF customization extensions for Jambalaya? The first step is to

include the CVF ontology in an ontology project in Protéǵe, using Prot́eǵe’s mechanism

for inclusion. This process loads the concepts and relationships in the CVF into the domain

ontology, and saves the domain ontology anew. The class panel of Protéǵe now looks like

Fig. 4.2. The user, who we take to be the Customizer, according to Michaud’s customiza-

tion framework [54], can now interact with the CVF without fear of altering its core model

in any way. Should Jambalaya add a new feature, all that is required is for the user to

replace the old CVF ontology files in her directory with the new files. The changes will

be automatically reflected in her Protéǵe project. This stratagem completely eliminates

inter-ontology coupling, allowing simple updates with no concerns over dependencies.

4.3 Interacting with the CVF 66

Figure 4.3. The user instance creation form in the CVF. New instances can be created and
options set using this form.

To use the CVF to customize the ontology, the Customizer navigates to the user panels

as seen in Fig.4.3, and creates a new user from one of the pre-defined abstract user classes.

In the example shown, the Customizer has decided to create a new End-User instance.

Using the form, the Customizer now combines his knowledge of the Jambalaya tool

with his knowledge of the domain (in this case, wines), to create a meaningful initial layout,

the actions needed, and any custom scripts an end-user in his group may need. This last

sentence describes what I feel is the power of the CVF framework. In this scenario, the

person most able to make accurate and useful decisions is empowered to do so, and the

developers of the tool are left to do what they are best able to: creating a suite of useful

actions, layouts, and tools for manipulating arbitrary graph-based data.

An important point about the CVF is that it makes some assumptions about the user’s

abilities or knowledge with Jambalaya: if there is something in the CVF that is incompati-

ble with Jambalaya, it is up to the user to determine this. For example, it is not possible to

perform a tree-layout on one node in Jambalaya, yet it is possible, depending on the ontol-

ogy, to make this happen using the CVF customizations. This is the flip-side to allowing a

4.4 Results of the customization 67

Figure 4.4. Jambalaya view showing customizations, such as new button in top-right cor-
ner.

Customizer to change the Jambalaya tool: there is the potential to break Jambalaya, if the

user is not fully aware of how Jambalaya works. However, such errors are not fatal, and

can be seen as part of the learning process. More detail on this issue is discussed in the

next chapter. One resolution may be to include some explanation of why a view was not

meaningful, for a limited definition of meaningful, such as only one node showing, no tree

layout done, too many arcs on the screen, too many nodes on screen, and so on.

4.4 Results of the customization

Having detailed some specifics for a particular user, the ontology (representing the com-

bined version) is now saved and the Jambalaya tab reloaded. Changes are now apparent

when the Jambalaya tab is initialized, and the customizations the user specified are cor-

4.4 Results of the customization 68

Figure 4.5. Jambalaya view without customizations. Note number of buttons, and different
initial layout.

rectly implemented in Jambalaya. In Fig.4.4, for example, we can see the custom button

the Customizer specified in the instance form, as well as fewer buttons available than the

default interface, representing the removal of those actions. I conjecture that such a cus-

tomization makes the Jambalaya plug-in more intuitive and simpler to understand, resulting

in increased adoption. To assess this claim, I evaluate the CVF using a qualitative approach,

discussed in the next section.

4.5 Validating the Prototype and Approach 69

4.5 Validating the Prototype and Approach

The conjecture that underpins this thesis is that providing domain experts a means to cus-

tomize a tool to their unique needs (that is, the needs of the users, and the domain con-

straints), will increase their perception of its cognitive support. Using the CVF to select or

enhance features, or to tailor the user interface, places the burden for determining effective

visualizations on the shoulders of the Customizer, and not the Designers.

Whether this leads to increased tool adoption is more difficult to assess. Tool adoption

is a very complex problem, with many different models and theories proposed to describe

both the technology transfer process and the nature of adoption. As such, this thesis does

not aim to show that the CVF model increases tool adoption, because this is a complex

process. This complexity is described in the diffusion literature (see [69] or [68] for intro-

ductions). For example, in the NCI project, the decision to use or not use Jambalaya (and

for that matter Prot́eǵe itself) certainly has something to do with their respective merits.

However, many other factors will play their part, including social aspects of the organiza-

tion, competing tools, budget constraints, and of course individual preferences. Rogers [69]

outlines some of the factors involved in adoption decisions by organizations. These include

1. knowledge about innovation and the need for change

2. persuasion and evaluation by decision makers

3. decision about acceptance

4. communication of decision to adopters

5. action or implementation of decision (and potential rejection)

Currently the status of the CVF with the NCI is at the second phase, which shows how

complex and lengthy the process can be. The other problem with examining the success or

failure of the CVF conjecture in the NCI context is that it would be quite difficult to extract

the personal qualities of the individuals involved so as to produce an unbiased case study.

For instance, part of the reason for adopting the tool may have to do with evangelizing

on the part of the motivated investigator (the author). Therefore, the validation of this

4.6 Selection of validation technique 70

conjecture cannot be done in the NCI adoption context; that is, the relative merits of this

conjecture cannot be assessed in this particular aspect. However, while the adoption/non-

adoption of Jambalaya using the CVF by the NCI does not indicate whether the particular

approach is worthwhile, there are certain aspects that we can assess independent of this

adoption criteria.

4.6 Selection of validation technique

What, then, would be an effective (i.e., tractable) and meaningful (allows conclusions to be

drawn about the approach and implementation) validation of the CVF conjecture? Mary

Shaw, in [72], describes a taxonomy of research techniques and the means for validating

them. Her taxonomy gives five chief methods for validating research (she writes for the

software engineering domain, but her analysis is applicable in this domain as well). These

types are analysis, evaluation, experience, example, and persuasion (as well as ‘blatant as-

sertion’, which will not be used!). Analysis typically suggests some empiricism using con-

trolled experiment or formal proof, not valid here because of the qualitative, exploratory

nature of the work. Evaluation suggests that one has examined the results and determined

the hypothesis accounts for what is occurring. This work is concerned with suggesting use-

ful hypotheses and does not propose to defend a particular one. Experience best fits what

this thesis is trying to accomplish, being a narrative or comparison of real-world problems

to demonstrate effectiveness. The work also proposes an example of how to accomplish

certain goals. Finally, the persuasion method of validation consists of proposing a hypo-

thetical solution and endeavoring to convince others of its suitability, but such a validation

is not adequate for a project of this size.

As shown, each validation type is best suited to a particular research objective. For this

thesis, the project takes the form of a generalization of using domain and tool models in

combination to customize visualization techniques, as well as an exploration of whether

this approach has any merit. Generalization refers to the work of this thesis in summariz-

ing the problems in this space and raising them to a higher level of awareness. Using this

4.7 Validation technique: implementation report 71

Table 3. Types of software engineering research results

Type of result Examples

Procedure or

technique

New or better way to do some task, such as design, implementation, maintenance,

measurement, evaluation, selection from alternatives; includes techniques for

implementation, representation, management, and analysis; a technique should be

operational—not advice or guidelines, but a procedure

Qualitative or

descriptive model

Structure or taxonomy for a problem area; architectural style, framework, or design pattern;

non-formal domain analysis, well-grounded checklists, well-argued informal

generalizations, guidance for integrating other results, well-organized interesting

observations

Empirical model Empirical predictive model based on observed data

Analytic model Structural model that permits formal analysis or automatic manipulation

Tool or notation Implemented tool that embodies a technique; formal language to support a technique or model

(should have a calculus, semantics, or other basis for computing or doing inference)

Specific solution,

prototype, answer,

or judgment

Solution to application problem that shows application of SE principles – may be design,

prototype, or full implementation; careful analysis of a system or its development, result of

a specific analysis, evaluation, or comparison

Report Interesting observations, rules of thumb, but not sufficiently general or systematic to rise to the

level of a descriptive model.

Table 4. Types of research results represented in ICSE 2002 submissions and acceptances

Type of result Submitted Accepted Ratio Acc/Sub

Procedure or technique 152(44%) 28 (51%) 18%

Qualitative or descriptive model 50 (14%) 4 (7%) 8%

Empirical model 4 (1%) 1 (2%) 25%

Analytic model 48 (14%) 7 (13%) 15%

Tool or notation 49 (14%) 10 (18%) 20%

Specific solution, prototype, answer, or judgment 34 (10%) 5 (9%) 15%

Report 11 (3%) 0 (0%) 0%

 TOTAL 348(100.0%) 55 (100.0%) 16%

Result

0

50

100

150

200

250

300

350

Tec
h

Q
ua

l m
od

E
m

p
m

od

Ana
l m

od

Too
l

S
pe

c
so

l

R
ep

or
t

Tot
al

Accepted Rejected

Result

0%

20%

40%

60%

80%

100%

Tec
h

Q
ua

l m
od

E
m

p
m

od

Ana
l m

od

Too
l

S
pe

c
so

l

R
ep

or
t

Tot
al

Accepted Rejected

Figure 3. Counts of acceptances and rejections

by type of result

Figure 4. Distribution of acceptances and rejections

by type of result

���������	
���	�������	�����������
������������� !�"���#�����������

Figure 4.6. Types of software engineering research results ([72], p. 4)

characterization, the thesis then outlined a feasibility study (implementation) to demon-

strate whether this technique was even useful or possible. I would classify this work as a

procedure or technique to improve adoption of complex visual interface (as per Fig.4.6).

For the qualitative model (the model of how people customize software provided by Jeff

Michaud [54] and applied to this problem) we can analyze the evidence for effectiveness

using a narrative, qualitative report by the users. I also provide a description of how this

implementation worked for a real-world task.

4.7 Validation technique: implementation report

In order to assess some of the technical aspects of using the CVF, I tested it using a small

sample ontology, the wines example from the preceding chapter. The CVF was used to

customize views of the wines ontology for different users. For end users, I removed features

I deemed confusing for the wines demo, such as Script Manager, Hierarchical Views, and so

on. I initiated a default layout which would show an overview of the ontology in horizontal

tree layout, and added some scripts via buttons that would allow users to navigate to specific

nodes, change the nesting relation, and return to a tree layout. This user instance was

4.8 Validation technique: experience report 72

included as a default example with the copy of the CVF I sent to people evaluating my

approach. I did this to provide people a starting point to identify what was occurring in

the customizations, and what some useful choices might be (as some users find it easier to

follow a path and deviate, rather than beginning anew).

4.8 Validation technique: experience report

The experimental set-up for the validation involved using domain experts in the CVF target

audience (larger knowledge-engineering projects involving 2 or more users). I selected five

such experts, as well as one pilot user, and requested that they attempt to use the Jambalaya

tool, with which all were previously familiar to varying degrees, having downloaded it in

the past or seen demonstrations of it. The five experts also all have backgrounds in knowl-

edge engineering with Protéǵe, with at least two years of experience, and in most cases

more. Selecting users who were already familiar with Jambalaya has its faults, however.

This approach risks bias from the users towards a tool they may appreciate or dislike. The

questionnaire endeavoured to emphasize the fact that the approach taken with the CVF is

merely exploratory and proposed, and highlighted the fact that the approach was aimed at

addressing some of the known issues with Jambalaya. Thus, users were expected to set

aside their previous interpretations of the tool and evaluate the CVF as a proof-of-concept

approach. This was the only means available to deal with this tool bias, and was not entirely

successful.

4.8.1 Initial contact and questionnaire

Prospective evaluators were emailed a message as shown in AppendixA, after first testing

the approach on a colleague as an initial iteration. Due to busy schedules, two users were

unable to complete the analysis at the time of this writing. I received three questionnaires

in return (in addition to the pilot study). The other evaluators have promised results and

these will be included when available. The questionnaire asked respondents to evaluate the

CVF by installing it, using it, and then answering the following:

4.8 Validation technique: experience report 73

1. Does the customization mechanism meet your expected difficulty level for something

of this nature?

2. Does the customization appear to make Jambalaya easier to use? You may want to

compare the un-customized version with the new version.

3. What other customizations do you consider important to reduce barriers to using

Jambalaya in your domain?

4. What are the biggest barriers, in your mind, to adopting Jambalaya (or other visual-

ization tools) for your domain?

5. Are there other ways to accomplish the goal of increasing the usefulness of generic

visualization approaches this methodology may not have brought up?

4.8.2 Pilot User

The pilot user was deeply familiar with the Jambalaya tool, being a developer. She also

had adequate experience with Protéǵe and ontology creation. As maintainer of a small-

sized research application leveraging ontologies, she also was familiar with working with

different end-users of her ontology. I asked her to complete the evaluation of the CVF by

following the instructions in the email, keeping in mind how it could be applied to end-

users of her application. Her responses were generally positive. She found the difficulty

level “very simple”, but wanted the ability to customize more than the initial layout with

the tool. This Customizer has a slightly different mental model of what an End-User may

want than my design anticipated, which suggests altering the CVF ontology. For instance,

she wanted to be able to present users with several static views (starting points), and then

“create buttons to toggle between them”. This user also mentioned that potential adoption

barriers in Jambalaya were its “heavyweight nature”; she wondered if a smaller web applet

would be a good introduction to the tool. Finally, this user mentioned that the ability to

“start somewhere” might be a better approach for users navigating a hierarchy.

4.8 Validation technique: experience report 74

4.8.3 User 1

This user initially had difficulty installing the application, due to a pre-existing error in the

Jambalaya installation. As part of dealing with this, he sent the ontology he was using. I

had the opportunity to examine what he had done and suggest improvements. The reason

for my suggestions was that the options he had specified would produce a graph view that

showed relatively little. He replied that this was because he had not used Jambalaya that

much, more ‘dabbled’ with it, and commented on the ‘steep learning curve’. His suggestion

for useful cognitive support in Protéǵe referred to the Instance-Tree widget described in

§3.3.2. Implementing similar functionality in Jambalaya, he felt, would be helpful. This

user did not perform the tasks, nor respond directly to the questionnaire.

4.8.4 User 2

This user found the installation trouble-free. Part of the reason for the difference with

the first user may be that this user did not have an existing Protéǵe installation. The user

was able to perform all the tasks save adding custom buttons to his instance. He did not

provide an explanation for this omission. In response to the questionnaire, this user made

the following comments:

1. As to whether the difficulty level was appropriate, the user found it too difficult.

He felt more emphasis should be made that the customizations are for Jambalaya

users, and suggested an extremely simple instance with no layouts as one option. He

recommended taking a set of “beginner”, “medium”, and “advanced” user instances,

and showing users how to copy these to create new values, using Protéǵe’s “copy

instance” feature. He also noted that the interface should not permit people to create

new layouts, as these are defined by the Designers, not the Customizers.

2. This evaluator felt that the customization options were good, as “one of the problems

of [Jambalaya] is its bewildering set of options. Your work can get rid of this.”

He felt it would be essential to closely integrate the changes in user instances with

4.8 Validation technique: experience report 75

immediate feedback in the Jambalaya panel. Currently, such changes appear only

after reloading the Jambalaya tab.

3. As to what other customizations might help, this user felt that the customizations

should be subtler, and driven by Jambalaya, rather than changing Protéǵe instances.

He suggested a “create new user type” option that operated as a wizard, allowing

someone to interactively specify which settings he or she wanted to use.

4. The biggest barrier for this user was Jambalaya’s complexity—“Jambalaya is hard to

understand and control”. He also mentioned software bugs as causing annoyance.

5. Finally, this user believed that the concept of generic visualizations are “tough to

sell”. To overcome this, he believes one of two things need to be done: “You either

need to appeal to pre-conceived visual notions of users or you need to do a good job

of educating and helping your users.”

4.8.5 User 3

This user had some initial installation problems, but did not report anything beyond that.

As to the questionnaire, he had the following comments:

1. He determined that the customization process was of acceptable difficulty, “but I ex-

pect it to be difficult for non-ontology-experts”. The chief problem was that what

each option did (e.g., various layouts) was not explained anywhere, so he was “se-

lecting blindly” while determining the effect on Jambalaya’s display.

2. As to whether this customization approach made Jambalaya easier to use, he wasn’t

convinced, largely because the user needs to learn all the options to select the correct

profile. He also suggested that if a user had to understand Jambalaya anyway, it might

be easier to make the changes in Jambalaya itself. He saw the benefit in different

user profiles, but thought the key was to select thecorrect profile, and prevent the

user from making wrong choices. I took his use of “wrong” here to mean unhelpful

or useless choices for that user. Finally, he felt making Customizers include separate

4.8 Validation technique: experience report 76

ontologies in their projects that are not domain related might “have an undesirable

effect on the service results”.

3. He expressed a desire to enable users to also customize other aspects such as zoom-

ing speed and label fonts in the customization settings, and not just in Jambalaya’s

options panel.

4. The biggest barrier in getting Jambalaya or other visualization solutions adopted he

listed as “scale, scale, and scale”.

5. Finally, this evaluator did not have an answer to the last question, although he felt it

was an important one.

4.8.6 Discussion and analysis

Several themes can be identified in these experience reports.

First, the evaluators felt that Jambalaya’s complexity would prevent customizations be-

ing properly used. Since the pilot user had extensive Jambalaya knowledge, manipulation

of the CVF ontology, particularly those aspects requiring significant knowledge of what

Jambalaya is capable of, was easy for her. The other users, by comparison, had much

less knowledge of Jambalaya. They experienced problems due to lack of knowledge of

Jambalaya’s features, such as useful views for a domain. This result indicates that a key

assumption of the CVF approach, that the Customizer be experienced with both Jambalaya

and his domain, is an extremely challenging one to meet. My conclusion is that Jambalaya

as it is distributed remains too complicated and therefore underused, even by technically

adept, motivated users, such as the ones in this evaluation.

Secondly, the evaluators either did not understand or did not appreciate the role of a

Customizer. This is clear from the comments that mentioned how customization options

might be better done in the Jambalaya application itself, rather than as an included ontology.

This issue may be due to poor explanation in the questionnaire, or it may be a dismissal of

the concept itself.

Finally, another source of problems was the instability and lack of features of a pro-

4.9 Summary 77

totype. I term this an ‘implementation bias’ because when presented with a medium or

high-fidelity prototype (I classify the current version of the CVF as ’high-fidelity’) users

inevitably assume it is stable, thoroughly tested, and complete. This is not the case here,

as there are several omissions and bugs still lingering in the implementation. Despite the

repeated message, though, people assumed this was yet another feature of Jambalaya, and

not a re-examination of the general approach. Although it didn’t happen directly, it is also

conceivable that prototypes could receive poor evaluations if they crash, despite the new

approach they present.

4.9 Summary

The evaluation techniques chosen were an experience report of my own attempts at using

the tool and qualitative reports from expert users. These two methods were preferred over

more empirical approaches, such as user studies, because the issue of cognitive support is a

highly personal one , and adoption success is difficult to interpret. Furthermore, developing

a highly mature tool was beyond the scope of this work. My own experiences allowed me

to assess how this approach could actually work, and revealed potential problems. I asked

other people their experiences using the CVF, and got them to detail the potential usefulness

of the approach. This allowed me to assess how likely it is that the CVF will have a

positive impact on adoption, at least in the sense that the CVF made it simpler for these

experts to customize the tool to their circumstances. The conclusions from the experts who

responded seems to highlight the fact that the Jambalaya tool remains highly complex. This

complexity revealed itself in the low numbers of respondents who considered themselves

skilled with Jambalaya. In turn, this suggests that the assumption behind this approach,

namely, that it most benefits those who have knowledge of both the domain and the tool,

will be a difficult one to meet. The following chapter summarizes this in more detail, and

presents some potential directions to take this work.

Chapter 5 – Conclusions
Jambalaya sees on average 3-4 downloads per day. This is a respectable amount for a

research tool, and suggests a great demand for the tool’s represented features. It remains

difficult to conclude much else from these statistics, however. As developers, we hear little

or nothing from these people, so it is hard to tell whether they are now satisfied, regular

users, or were merely experimenting, and have now given up. What is known, however, is

the reaction of individuals and organizations we talk to regularly. A good representation

of these people was captured in§4.8.2. Their experiences suggest that the complexity of

Jambalaya greatly limits its usefulness to users.

Like many research tools, Jambalaya is feature rich and advanced. In this problem

space, though, the requirements of end users are much more complex than any one ap-

proach can address. For example, User 1 demanded features that Jambalaya has never

supported. Attempts to retrofit customization frameworks on it, such as the CVF, must first

address these underlying cognitive issues.

5.1 The use of customization

This thesis examined the modeling phase of knowledge engineering methodologies, and

analyzed other research in the field to present a preliminary list of tasks that might need

cognitive support. Several design goals were presented that tools trying to support these

tasks needed to consider. Of these, the customization goal is usually overlooked (often

in favour of scalability), and yet seems to present one potential mechanism to encourage

knowledge engineers to adopt cognitive support tools. With that in mind, the Customizable

Visualization Framework for Jambalaya was created. The CVF created a model of Jam-

balaya which allowed knowledgeable users, termed Customizers in the parlance of [54], to

create domain-specific adaptations of the tool.

That this was possible was shown by the implementation report. That this was feasi-

ble was examined in qualitative experience reports by domain experts. These reports were

5.1 The use of customization 79

inconclusive; some users felt the approach made sense, but generally, the overwhelming

number of features in the underlying Jambalaya tool made users conflate the customization

approach with the Jambalaya implementation. As such, it cannot be concluded that the

customization approach works for this specific tool. However, these uncertain results lead

me nevertheless to conclude that customization is a valuable design goal for these types

of tools. This conclusion is based on other research into customization, such as Wendy

Mackay’s work (see [50] and [51]), as well as the presence of select customization support

in major software packages such as Microsoft Office and Eclipse, and the general enthusi-

asm which the respondents displayed towards the idea. An example of this enthusiasm was

the idea, put forth by the NCI, that a customized version of Jambalaya posted on their web

page would be an excellent tool for users to download. The customizations would tailor

that version of Jambalaya specifically for browsing the NCI ontology.

Plenty of customization work incorporating formal conceptual models (unlike the cus-

tomization in Microsoft Office, for example) exists in the hypermedia research space. On-

toweaver, designed by Lei, Motta, and Domingue [48] is a similar approach for the domain

of hypermedia. Ontoweaver uses a combination of domain, user, and presentation ontolo-

gies, together with the JESS inference engine, to present customizable websites to different

users. This approach is very similar to mine. For example, the CVF ontology also maps

user, domain, and presentation knowledge, albeit in one, and not three ontologies. I imple-

mented the application logic in Java code, and not explicit rules, which makes my approach

more difficult to modify, but for this limited prototype, this method is sufficient.

The Ontoweaver work makes no mention of evaluation, save for implementation re-

ports similar to that I provided in Chapter4. This makes it difficult to assess how well

these techniques work. One possible criticism is the overhead additional models introduce.

As stated previously, modeling is difficult to do, and requiring Designers to conceive of

three models, as in Ontoweaver’s case, seems unwieldy. This is perhaps why the implicit

conceptual model of Microsoft Word works best. The difference between the CVF and

other model-based interfaces is that they do not support the notion of customization by

5.2 Enabling customization vs. improving usability 80

the domain experts, just the Designers. For example, Teallach [5] designs interfaces on

databases, so it can be customized by designers for specific applications (like any other

GUI builder), but not by the actual users of the tool.

Mackay, in [50], makes no mention of user models or domain models. In this sense,

customization describes a user-initiated process. Gantt and Nardi [35] make mention of

‘Gurus’, users in a particular setting with the ability to customize their tools and extend the

benefits to colleagues. They make no mention of formalizing these customization efforts

beyond Designers providing examples of customizations. However, their work used a User

and Customizer perspective, not a Designer perspective. Michaud and Storey [55] discuss

the Designer perspective, but forego formal models.

While the results of the CVF prototype were mixed, the customization aspect is a use-

ful approach. The NCI team, for example, have suggested posting a customized version of

the Jambalaya tool on their website, alongside the Thesaurus. They appreciate the idea of

customizing views on the data for non-domain experts. Customization is perhaps most use-

ful as a focus for user-centered design efforts. It can help Designers assess what aspects of

their tool should or should not be customizable, based on an assessment of the requirements

for the user base. For example, for the community Jambalaya was addressing, needs and

requirements were quite varied, although commonalities existed. This should suggest to

developers that customization is a useful design goal for this space. However, customiza-

tion needs to be carefully thought out, lest too large a cognitive burden is placed on the

Customizers, as was the case with the CVF.

5.2 Enabling customization vs. improving usability

A critique of this work one might expect is, “All you did was improve the tool’s usability”.

Usability improvements will almost certainly result in more favorable reviews of the tool,

because user complaints have been directly addressed by the designers. It stands to reason

that solving user complaints will result in an increased appreciation for the tool. However,

the problem with this approach, particularly in this case, is that the usability improvements

5.2 Enabling customization vs. improving usability 81

Image

Domain
Model

Customizations
Model

Implementation
Model

Domain
Knowledge

Programming
Knowledge

Designer

Domain
Model

Customizations
Model

Implementation
Model

Programming
Knowledge

Domain
Knowledge

User
Knowledge

Customizer

Domain
Model

Customizations
Model

Domain
Knowledge

User

System

Refined Image
Interaction Styles for User

Documentation

Image

Formal
Language

Documentation

Source Code

System

Expert
Knowledge

Mental
Model

Knowledge
Creates/Modifies

Learns

Figure 5.1. Customization model, showing the relationships between Customizer and De-
signer, and Customizer and User

require access by the designers to the users. In the domain of knowledge engineering,

however, each set of users may have a fairly unique list of requirements, as demonstrated

in Chapter3. Hence, usability improvements by the designers are unlikely to resolve the

issues at a wider scale. Implementing customization features in the tool, however, shifts

some of this responsibility for usability to the Customizer. The CVF operates at the in-

tersection between Designer and Customizer, as shown in Fig.5.1, and this is reflected

in the evaluation, as none was performed on the customizations created for Users. While

usability studies remain important, the success of the CVF cannot be analyzed solely by

the number of users who adopt Jambalaya with customizations; because the CVF is for the

Customizer, the success or failure of this person to customize for her domain will largely

determine adoption. This second aspect of the tool requires more detailed analysis.

5.3 Why knowledge engineering should care about adoption 82

5.3 Why knowledge engineering should care about adop-
tion

Shipman and Marshall, in [73], write extensively about the problems with users and explicit

representations, a problem seen in the evaluation of the CVF, and also in the wider knowl-

edge engineering community. They make the case that requiring users to formally represent

their knowledge and work (for example, capturing metadata) is likely to be met with a high

degree of resistance, a reference to the Knowledge Acquisition bottleneck. They conclude

that such efforts are unlikely to be successful. In one study, although the explicit model

was successful in reducing long-term costs (by making assumptions explicit, for instance),

it nonetheless was not adopted outside the domain of use, and success in that domain was

attributed to “social pressure, extensive training, or continuing human facilitation ([73], p.

5)”.

Their paper illustrates the dangers of developing tools without considering the social

issues they create. Adoption should therefore play a larger role in the development of all

knowledge engineering tools, if only as a metric for assessing tool development. Such a

focus has a meta-implication for this thesis. Cognitive support is required for reducing

the burden formalizations place on users, and therefore the efforts this thesis analyzed

can also be seen in the light of reducing some of the difficulties users face when using

general knowledge engineering tools. However, these support tools need also to focus

on adoption, particularly by the Designers of the knowledge engineering tools. The CVF

implementation, and subsequent evaluation, have shown that the problems of high cognitive

load exist in this space as well. While the CVF approach was unique in trying to focus on

appealing to a Customizer, or local champion of the technology, because it retained all

the functionality of a pre-existing tool, it overwhelmed these champions. Naturally, some

tools will not concern themselves with adoption. They exist as experimental efforts, and

whether they see widespread use may not be relevant to the developers. For most other

tools, however, adoption of the tool provides useful feedback on the approach, tested in

5.4 Cognitive support needs consideration 83

real-world settings.

5.4 Cognitive support needs consideration

This thesis has dealt extensively with the interplay of usability, usefulness, and cognitive

support. Too few tools elaborate on what they are trying to accomplish, and how to estab-

lish that this was in fact done. This might take the form of a list of requirements addressed

and a means to assess these were met. Considering cognitive support in tool design means

appreciating the roles different aspects of the design process play. For example, tool de-

signers must consider what design goals their tool is trying to address, and why. Is the tool

to be highly scalable? Emphasize usability? Or, as in this work, enable customizability?

Thinking of these different goals will help the designers clearly understand what is being

achieved.

Also important is a good understanding of the requirements the tool is trying to address.

What functionality will be included? Why? What knowledge engineering tasks will these

functions help with? What user community is being targeted? Is this tool focused on one

particular set of users? If so, this should be mentioned in the documentation. Is a generic

tool being designed (like Jambalaya)? Perhaps customizability and usability should be big

focuses.

Finally, comprehensive design requires consideration of what cognitive support the tool

might provide. Cognitive support is an amalgam of the previous considerations, and results

from the interaction between a specific user, his or her problems, and the functionality a tool

provides. The objective here is to have a good understanding of what makes a particular

tool useful. Is it the user? The features of the tool? The problem space it addresses?

Understanding these questions will ensure that the designer of the tool, as well as users,

have some comprehension of how the tool is to work, and what it can offer users. The

human interest in discovering, understanding, and communicating new knowledge will

require knowledge engineering tools which can support a variety of cognitive tasks.

5.5 Contributions 84

5.5 Contributions

This thesis has made several unique contributions in the area of developing cognitive sup-

port tools for the knowledge engineering community.

• Sounded a call for more attention to end users by tool developers. This should be

done by gaining a deeper appreciation of the cognitive support a tool can provide.

This implies understanding both the utility a tool should provide, as well as the us-

ability criteria a tool needs to address.

• Emphasized the importance of addressing the issue of tool adoption by end users.

Although complex, using adoption as a metric will provide developers an opportunity

to assess how well they addressed the domain’s requirements and characteristics.

Making the usefulness of a tool explicit will help in this area.

• Empirically derived a taxonomy of knowledge engineering tasks requiring cognitive

support. This taxonomy addresses the general lack of such explicitly stated tasks and

allows tool designers to evaluate their efforts based on this list.

• Provided a detailed evaluation of four tools providing advanced visual interfaces for

Prot́eǵe, based on the task taxonomy, something previously poorly understood.

• Suggested the need to consider non-functional design goals when constructing these

tools. I proposed five such goals and illustrated them and their trade-offs in this

problem space.

• Finally, implemented the CVF, a combination of a domain, user, and presentation

ontology, with Java-encoded application rules. With this tool, one can customize the

presentation of information in Jambalaya, as well as determine feature selection and

enhancement. This tool and the underlying approach were validated using outside

expert users.

5.6 Future research directions 85

5.6 Future research directions

The CVF project was created as a prototype for testing some hypotheses about the use of

customization in advanced visual interfaces for knowledge engineering. Given the con-

clusions I make above, there is no need to improve the CVF itself beyond what currently

exists. Putting more effort into adding features to Jambalaya is not useful, either, unless

such an effort is placed in the context of this work. There are two opportunities that I see

for future work on Jambalaya.

One is to target a more specific application of the tool, such as the National Cancer

Institute’s Thesaurus. More effort would be expended on identifying domain-specific re-

quirements, and combining those with the general knowledge engineering tasks I identified

earlier. This combination would then allow the Designers to alter Jambalaya to specifically

address those tasks.

Second, and perhaps most interesting, is to position Jambalaya as a collection of com-

ponents which can be reconfigured based on specific requirements. In the customization

model used in [54] and shown in Fig.5.1, there are three major players in the process: a

Designer, Customizer, and End User. This model could be extended to add a fourth role,

tentatively titled Cognitivist, after Green and Petre [40]. They position the Cognitivist as

the person who determines (in a broad-brush, task-specific analysis) what cognitive require-

ments are for a particular tool and problem, possibly using Green’s Cognitive Dimensions

framework [41]. The Cognitivist would operate between the Designer and the Customizer

to identify the general domain requirements, and thereby “[illustrate] some of the cogni-

tive consequences of making a particular bundle of design choices that position the artifact

in the space ([40], p. 133)”. This allows the Designer to assemble the required compo-

nents accordingly. For example, the tasks requiring support might suggest building a tool

that provided slot-based browsing and concept editing, but not top-down exploration. This

would shift the burden of understanding Jambalaya in its complex entirety to the Cogni-

tivist from the Customizer. The Customizer’s role would then consist of selecting useful

5.6 Future research directions 86

default views and designing helpful scripts for the End User. The cognitive burden on the

Customizer would be reduced because the Cognitivist had already performed some task

analysis for that domain.

There are other potential approaches to the problem of building advanced visual inter-

faces for cognitive support in knowledge modeling. One approach which might eliminate

some complexity is to offload the Customizer’s cognitive processing onto the tool. Such a

tool would use intelligent learning techniques and recommend, based on previous use, im-

portant view paths to new users. A view path consists of a series of steps through a model;

this might consist of navigating from an overview, along a series of relationships, to a node

of interest. The tool would assign weights to the different view paths and recommend other,

similar paths to experienced users, and also make a list of popular paths to new users.

Another technique, currently used by the Isaviz tool (§2.2.2.1), is to externalize the pre-

sentation of the graph into a customizable stylesheet. The stylesheet would consist of a

series of transformations of the graph, such as changing node shape, removing unnecessary

arcs, or changing layout parameters. The danger with this approach is that it asks Cus-

tomizers to learn yet another formalism for viewing their data. The CVF ontology used an

explicit model to capture customizations. While the stylesheet approach is not as explicit,

it still requires users to understand how the model is constructed. Learning this model is

time-consuming. It might be more useful to examine ways of making customizations for

this space more implicit (similar to the Microsoft Word approach, for example).

Implicit customizations would allow items in the tool itself to be removed directly,

for example via right-clicking and selecting “remove item”. Similarly, nodes and arcs in

the layout could be customized by selecting them and choosing whether to show them

or not, and with what styles. This set of preferences could then be saved in an external

representation so that they could be re-applied to other domains. Currently, Jambalaya

allows one to customize the arc types and node types to a small extent (colour and limited

shapes), but only for a particular ontology. It would be interesting to examine making these

changes more extensive and reproducible.

5.6 Future research directions 87

8 · J. Hollan et al.

Fig. 1. Integrated Research Activity Map

Distributed Cognition Ethnography

Workplaces

Experiment Work Materials

example,

—people establish and coordinate different types of structure in their environment

—it takes effort to maintain coordination

—people offload cognitive effort to the environment whenever practical

—there are improved dynamics of cognitive load-balancing available in social orga-
nization.

These principles serve to identify classes of phenomena that merit observation and
documentation. Cognitive ethnography has methods for observing, documenting
and analyzing such phenomena, particularly information flow, cognitive properties
of systems, social organizations and cultural processes. Because cognitive ethnog-
raphy is an observational field, the inferences we would like to draw are at times
be under-constrained by the available data. In these cases, the findings of cogni-
tive ethnography may suggest ‘ethnographically natural’ experiments to enrich our
data.

The principles of distributed cognition are also at play in these experiments
because the point of experimentation should be to make more precise the impact of
changes in the naturally occurring parameters that theory tells us are important.
As these three areas – principles, ethnography and experiment – are elaborated,
they mutually constrain each other and offer prescriptive information on the design
of work materials. To be sure, the matter is more complicated. Work materials
are themselves part of workplaces, and themselves constitute important changes in
the distributed cognition environment. So the introduction of a new work material
is itself a form of ethnographic experiment, which allows us to test and revise
the theory. But in general, we give pride of place to the principles of distributed
cognition, for it is these that inform experiment, ethnographic observation and
design of work materials and workplaces.

It is worth elaborating these relations. Consider how cognitive ethnography is
used. Cognitive ethnography seeks to determine what things mean to the partici-
pants in an activity and to document the means by which the meanings are created.
This is invariably revealing and often surprising. For example, in the world of avi-

Figure 5.2. Distributed cognition research loop [43]

5.6.1 Critical assessment of the research

To conclude the thesis, a more critical look is taken at what the research has established,

and where it positions future efforts in this problem area. In Hollanet al. [43] a useful

framework for assessing this type of research is given in the form of a ‘research loop’, as

shown in Fig.5.2. This research loop is used to illustrate the benefits of cognition research;

in this particular figure, using ideas from thedistributed cognitionparadigm. Distributed

cognition (DC) examines cognitive processes holistically, considering not just the human

and tool interaction, but related aspects of that interaction, such as work setting, other

actors, and different tools.

The research loop highlights the process used in this thesis. Using DC, theories arise

about problems and issues of interest to the researcher. In this case, these theories take

the form of proposed tasks requiring support, design goals, and the notions of cognitive

support and adoption. In order to expand knowledge about such theories, techniques from

cognitive ethnography are used, including contextual inquiry, participant observation, or

observational study. These techniques are then used to design experiments, studies de-

signed to enhance understanding of the problem. In this work, such experiments involved

heuristic walkthroughs, the fieldwork at the NCI and Anatomy groups, and the experience

5.6 Future research directions 88

reports from expert users. While Hollanet al. are concerned almost exclusively with qual-

itative, ethnographic research methods, quantitative approaches can be equally effective.

Good research requires understanding the benefits and problems with each approach, and

applying those most suited to the task at hand. These experiments then produce work ma-

terials, such as the CVF+Jambalaya product, as well as impacting the development of other

tools, such as Protéǵe. These changes in turn affect the workplace and work practices of

the organization.

The cyclical nature of the framework implies that the work carried out in this thesis has

no definitive endpoint—there is no ultimate product that will solve all problems. Rather,

having undergone the process, researchers are now poised to assimilate the results in or-

der to embark on more theory generation, more experimentation, and more tool design.

The real product of this research is a deeper understanding of some of the problems, and

approaches to those problems, in this domain.

Bibliography
[1] J. Ahlers and H. Weimer, “Challenges in interactive visualization for knowledge man-

agement,” inSixth International Conference on Information Visualisation (IV02).
London, UK: IEEE, 2002, pp. 367–371.

[2] H. Alani, “TGVizTab: An ontology visualisation extension for protege,” inKnowl-
edge Capture 03 - Workshop on Visualizing Information in Knowledge Engineering.
Sanibel Island, FL: ACM, 2003, pp. 2–7.

[3] M. M. Allen, “Empirical evaluation of a visualization tool for knowledge engineer-
ing,” M. Sc., Computer Science Department, University of Victoria, 2003.

[4] C. Alves and A. Finkelstein, “Matching multiple COTS: Can we achieve a happy mar-
riage?” inWorkshop on Adoption-Centric Software Engineering at ICSE03. Port-
land, OR: SEI, 2003, pp. 62–66.

[5] P. J. Barclay and J. Kennedy, “Teallach’s presentation model,” inworking conference
on Advanced visual interfaces, Palermo, Italy, 2000, pp. 151 – 154.

[6] M. I. Bauer and P. Johnson-Laird, “How diagrams can improve reasoning,”Psycho-
logical Science, vol. 4, no. 6, pp. 372–378, 1993.

[7] B. Bederson, “Interfaces for staying in the flow,” University of Maryland Human
Computer Interaction Lab, Technical Report HCIL-2003-37, October 2003.

[8] T. Berners-Lee, M. Fischetti, and M. Dertouzos,Weaving the Web: The Original
Design and Ultimate Destiny of the World Wide Web by its Inventor. San Francisco:
Harper, 1999.

[9] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”Scientific American,
p. 279, May 17 2001.

[10] C. Best, “Designing a component-based framework for a domain independent visual-
ization tool,” M.Sc., Computer Science Department, University of Victoria, 2002.

[11] H. Beyer and K. Holtzblatt,Contextual Design: Defining Customer-Centred Systems.
San Francisco: Morgan Kaufmann, 1998.

[12] J. Blythe, J. Kim, S. Ramachandran, and Y. Gil, “An integrated environment for
knowledge acquisition,” inInt. Conf. on Intelligent User Interfaces, San Francisco,
CA, 2001, pp. 13–20.

[13] B. Boehm, “A spiral model of software development and enhancement,”IEEE Com-
puter, vol. 21, no. 5, pp. 61–72, 1988.

[14] R. Brachman, D. L. McGuinness, P. Patel-Schneider, L. Resnick, and A. Borgida,
“Living with CLASSIC: When and how to use KL-one-like language,” inPrinciples
of Semantic Networks, J. F. Sowa, Ed. Morgan Kaufmann, 1991, pp. 401–456.

Bibliography 90

[15] B. Buchanan and E. Shortliffe,Rule-Based Expert Systems: The MYCIN experiments
of the Stanford Heuristic Programming Project. Reading, MA: Addison-Wesley,
1984.

[16] S. Card, J. D. Mackinlay, and B. Shneiderman,Readings in Information Visualization:
Using Vision to Think. London: Academic Press, 1999.

[17] C. Cheng, Y. Shahar, A. Puerta, and D. Stites, “Navigation and visualization of ab-
stractions of time-oriented clinical data,” Stanford Medical Informatics, Tech. Rep.
SMI-97-0688, 1997.

[18] L. Chung, B. Nixon, and E. Yu, “Using non-functional requirements to systematically
select among alternatives in architectural design,” in1st International Workshop on
Architectures for Software Systems, Seattle, 1995, pp. 31–43.

[19] P. Clark, J. Thompson, K. Barker, B. Porter, V. Chaudhri, A. Rodriguez, J. Thomere,
S. Mishra, Y. Gil, P. Hayes, and T. Reichherzer, “Knowledge entry as the graphical
assembly of components,” in1st International Conference on Knowledge Capture
(K-Cap ’01). Victoria, BC: ACM Press, 2001, pp. 22–29.

[20] P. Clitherow, D. Riecken, and M. Muller, “VISAR: a system for inference and navi-
gation of hypertext,” inConference on Hypertext and Hypermedia. Pittsburgh, Penn-
sylvania, United States: ACM, 1989, pp. 293 – 304.

[21] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, “Un-
raveling the web services web: An introduction to SOAP, WSDL, and UDDI,”IEEE
Internet Computing, pp. 86–93, March/April 2002.

[22] S. Decker, M. Erdmann, D. Fensel, and R. Studer, “Ontobroker: Ontology based
access to distributed and semi-structured information,” inDS-8, ser. Semantic Issues
in Multimedia Systems, R. Meersman, Ed. Kluwer, 1999, pp. 351–369.

[23] V. Devedzic, “Understanding ontological engineering,”Communications of the ACM,
vol. 45, no. 4, pp. 136–144, 2002.

[24] M. Eisenstadt, J. Domingue, T. Rajan, and E. Motta, “Visual knowledge engineering,”
IEEE Trans. on Software Engineering, vol. 16, no. 10, pp. 1164–1177, 1990.

[25] P. Eklund, N. Roberts, and S. P. Green, “Ontorama: Browsing an RDF ontology
using a hyperbolic-like browser,” inFirst International Symposium on CyberWorlds
(CW2002). Tokyo: IEEE, 2002, pp. 405–411.

[26] N. Ernst, M.-A. Storey, and P. Allen, “Cognitive support for ontology modeling,”
submitted to Int. Journal of Human-Computer Studies, October 2003.

[27] N. A. Ernst, “Adoption-centric knowledge engineering,” inWorkshop on Adoption-
Centric Software Engineering at ICSE 2003, H. Mueller, Ed., Portland, OR, 2003.

Bibliography 91

[28] N. A. Ernst, M.-A. D. Storey, P. Allen, and M. A. Musen, “Addressing cognitive
issues in knowledge engineering with Jambalaya,” inWorkshop on Visualization in
Knowledge Engineering at KCAP 03, Sanibel Island, FL, 2003, pp. 26–30.

[29] N. A. Ernst and M.-A. Storey, “A preliminary analysis of visualization requirements
in knowledge engineering tools,” University of Victoria,” CHISEL Technical Report,
August 19 2003.

[30] K. Fairchild, S. Poltrock, and G. Furnas, “Semnet: Three-dimensional graphic rep-
resentations of large knowledge bases,” inCognitive Science and its Applications for
Human-Computer Interaction, R. Guidon, Ed. Lawrence Erlbaum Associates, 1988,
pp. 201–233.

[31] R. d. A. Falbo, G. Guizzardi, and K. C. Duarte, “An ontological approach to domain
engineering,” inInternational Conference on Software Engineering and Knowledge
Engineering, SEKE02, Ischia, Italy, 2002.

[32] P. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A. Müller, J. Mylopou-
los, S. G. Perelgut, M. Stanley, and K. Wong, “The software bookshelf,”IBM Systems
Journal, vol. 36, no. 4, pp. 564–593, 1997.

[33] T. Fruchterman and E. M. Reingold, “Graph drawing by force-directed placement,”
Software - Practice and Experience, vol. 21, no. 11, pp. 1129–1164, November 1991.

[34] B. Gaines and M. Shaw, “Concept maps as hypermedia components,”Int. Journal of
Human-Computer Studies: Special Issue on Knowledge-Based Hypermedia, vol. 43,
no. 3, pp. 323–361, 1995.

[35] M. Gantt and B. Nardi, “Gardeners and gurus: patterns of cooperation among CAD
users,” inProceedings of the SIGCHI conference on Human factors in computing
systems, Monterey, California, 1992, pp. 107 – 117.

[36] P. Garvey and B. French, “Generating user interfaces from composite schemas,” in
XML 2003, Philadelphia, Pennsylvania, 2003.

[37] J. H. Gennari, M. A. Musen, R. Fergerson, W. E. Grosso, M. Crubzy, H. Eriksson,
N. F. Noy, and S. W. Tu, “The evolution of Protéǵe: An environment for knowledge-
based systems development,”International Journal of Human-Computer Studies,
vol. 58, no. 1, pp. 89–123, 2003.

[38] M. Ginsberg, “Knowledge interchange format: The KIF of death,”AI Magazine,
vol. 12, no. 3, 1991.

[39] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler, “The Na-
tional Cancer Institute’s thesaurus and ontology,”Journal of Web Semantics, vol. 1,
no. 1, 2003.

Bibliography 92

[40] T. R. G. Green and M. Petre, “Usability analysis of visual programming environ-
ments: a ‘cognitive dimensions’ framework,”J. Visual Languages and Computing,
vol. 7, no. 2, pp. 131–174, June 1996.

[41] T. R. G. Green, “Cognitive dimensions of notations,” inFifth conference of the British
Computer Society, Human-Computer Interaction Specialist Group on People and
computers V. Nottingham, UK: Cambridge University Press, 1990, pp. 443 – 460,
iSBN:0-521-38430-3.

[42] T. Gruber, “Towards principles for the design of ontologies used for knowledge shar-
ing,” International Journal of Human-Computer Studies, vol. 43, no. 5-6, pp. 907–
928, November 1995.

[43] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed cognition: Toward a new foun-
dation for human-computer interaction research,”ACM Transactions on Computer-
Human Interaction, vol. 7, no. 2, p. 174196, June 2000.

[44] I. Horrocks, “FaCT and iFaCT,” inProceedings of the International Workshop on
Description Logics (DL’99), P. Lambrix, A. Borgida, M. Lenzerini, R. M̈oller, and
P. Patel-Schneider, Eds., 1999, pp. 133–135.

[45] I. Hsi, C. Potts, and M. Moore, “Ontological excavation: Unearthing the core concepts
of the application,” in10th Working Conference on Reverse Engineering. Victoria
BC: IEEE, 2003, pp. 345–352.

[46] Y. Kalfoglou, “Exploring ontologies,” inHandbook of Software Engineering and
Knowledge Engineering, C. Chen, Ed. World Scientic Publishing Company, 2000,
vol. 1.

[47] P. D. Karp, V. K. Chaudhri, and S. M. Paley, “A collaborative environment for author-
ing large knowledge bases,”Journal of Intelligent Information Systems, vol. 13, pp.
155–194, 1999.

[48] Y. Lei, E. Motta, and J. Domingue, “Design of customized web applications with
Ontoweaver,” inInternational Conference On Knowledge Capture, Sanibel Island,
FL, USA, 2003, pp. 54 – 61.

[49] R. Lintern, J. Michaud, M.-A. D. Storey, and X. Wu, “Plugging-in visualization: Ex-
periences integrating a visualization tool with Eclipse,” inSoftVis 2003, 2003, pp.
47–56.

[50] W. E. Mackay, “Triggers and barriers to customizing software,” inComputer Human
Interaction (CHI 91). ACM, 1991, pp. 153–160.

[51] ——, “Responding to cognitive overhead: co-adaptation between users and technol-
ogy,” Intellectica, vol. 30, no. 1, pp. 177–193, 2000.

Bibliography 93

[52] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz, “Ontologies for enter-
prise knowledge management,”IEEE Intelligent Systems, vol. 18, no. 2, pp. 26–33,
March/April 2003.

[53] F. Manola and E. Miller. (2002) RDF primer. World Wide Web Consortium. [Online].
Available: http://www.w3.org/TR/rdf-primer

[54] J. Michaud, “A software customization framework,” M.Sc., Computer Science De-
partment, University of Victoria, 2003.

[55] J. Michaud and M.-A. D. Storey, “The role of knowledge in software customization,”
in 15th Int. Conf. on Software Engineering and Knowledge Engineering (SEKE03),
San Francisco Bay, CA, 2003.

[56] E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendler, and G. Schreiber.
(2003) W3C semantic web. World Wide Web Consortium. [Online]. Available:
http://www.w3.org/2001/sw/

[57] M. Minsky, “A framework for representing knowledge,” inThe Psychology of Com-
puter Vision, P. Winston, Ed. New York: McGraw-Hill, 1975, pp. 211–277.

[58] H. Müller. (2003) Adoption-centric software engineering. Department of Computer
Science, University of Victoria. [Online]. Available:http://www.acse.cs.uvic.ca/

[59] J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using non-functional re-
quirements: A process-oriented approach,”Software Engineering, vol. 18, no. 6, pp.
483–497, 1992.

[60] B. Nardi, A Small Matter Of Programming: Perspectives on End-User Computing.
Cambridge, MA: MIT Press, 1993.

[61] D. Nardi and R. J. Brachman, “An introduction to description logics,” inThe Descrip-
tion Logic Handbook: Theory, implementation and applications, 2nd ed., F. Baader,
D. Calvanese, D. McGuinness, D. Nardi, and P. P. Schneider, Eds. Cambridge UK:
Cambridge University Press, 2003, pp. 1–574.

[62] G. K.-C. Ng, “Interactive visualization techniques for ontology development,” Ph.D.,
Computer Science Department, University of Manchester, 2000.

[63] D. A. Norman,The Design of Everyday Things. New York: Currency and Doubleday,
1988.

[64] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide to creating
your first ontology,” Stanford Medical Informatics, Technical Report SMI-2001-0880,
2001.

[65] N. F. Noy, M. Sintek, S. Decker, M. Crubzy, R. W. Fergerson, and M. A. Musen,

http://www.w3.org/TR/rdf-primer
http://www.w3.org/2001/sw/
http://www.acse.cs.uvic.ca/

Bibliography 94

“Creating semantic web contents with Protéǵe-2000,”IEEE Intelligent Systems, pp.
60–72, Mar/Apr 2001.

[66] A. Pease, R. A. Liuzzi, and D. Gunning, “Knowledge bases,” inEncylopedia of Soft-
ware Engineering, 2nd ed., J. Marciniak, Ed. New York: Wiley & Sons, 2001.

[67] E. Pietriga, “IsaViz: a visual environment for browsing and authoring RDF models,”
in WWW 2002, the 11th World Wide Web Conference. Honolulu, Hawaii, USA:
World Wide Web Consortium, 2002.

[68] S. Rifkin, “Why new software processes are not adopted,”Advances in Computers,
vol. 59, 2003.

[69] E. Rogers,Diffusion of innovations, 4th ed. New York: The Free Press, 1995.

[70] G. Schreiber, B. Wielinga, R. d. Hoog, H. Akkermans, and W. v. d. Velde, “Com-
monKADS: A comprehensive methodology for KBS development,”IEEE Expert
(IEEE Intelligent Systems), vol. December, pp. 28–38, 1994.

[71] M. Shaw, “Towards an engineering discipline of software,”IEEE Software, pp. 15–24,
November 1990.

[72] ——, “Writing good software engineering research papers,” inInternational Confer-
ence on Software Engineering, Portland OR, 2003, pp. 1–11.

[73] F. M. Shipman and C. C. Marshall, “Formality considered harmful: Experiences,
emerging themes, and directions on the use of formal representations in interactive
systems,”Computer Supported Cooperative Work, vol. 8, no. 4, pp. 333–352, 1999.

[74] B. Shneiderman, “Tree visualization with Tree-Maps: 2-D space-filling approach,”
ACM Transactions on Graphics, vol. 11, no. 1, pp. 92 – 99, 1992.

[75] M. Sintek. (2003) Ontoviz tab: Visualizing Protéǵe ontologies. [Online]. Available:
http://protege.stanford.edu/plugins/ontoviz/ontoviz.html

[76] D. Skuce and T. C. Lethbridge, “CODE4: A unified system for managing conceptual
knowledge,”International Journal of Human Computer Studies, vol. 42, pp. 413–451,
1995.

[77] M. K. Smith, D. McGuiness, R. Volz, and C. Welty. (2002) Web ontology language
(OWL) guide version 1.0. World Wide Web Consortium. [Online]. Available:
http://www.w3.org/TR/owl-guide

[78] J. F. Sowa,Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Pacific Grove, CA: Brooks/Cole, 2000.

[79] M.-A. Storey, F. Fracchia, and H. A. M̈uller, “Cognitive design elements to support
the construction of a mental model during software exploration,”Journal of Software
Systems: special issue on Program Comprehension, vol. 44, pp. 171–185, 1999.

http://protege.stanford.edu/plugins/ontoviz/ontoviz.html
http://www.w3.org/TR/owl-guide

Bibliography 95

[80] M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F. Noy,
“Jambalaya: Interactive visualization to enhance ontology authoring and knowledge
acquisition in protege,” inWorkshop on Interactive Tools for Knowledge Capture,
K-CAP-2001, Victoria, B.C. Canada, 2001.

[81] M.-A. D. Storey, K. Wong, F. Fracchia, and H. Müller, “On integrating visualization
techniques for effective software exploration,” inInfoVis ’97, Phoenix, AZ, 1997, pp.
38–45.

[82] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: Principles and
methods,”Data Knowledge Engineering, vol. 25, no. 1-2, pp. 161–197, 1998.

[83] P. Suber. (1999) Glossary of first-order logic. [Online]. Available:http:
//www.inf.unibz.it/∼franconi/teaching/1999/3411/logic-glossary/

[84] M. Tallis, J. Kim, and Y. Gil, “User studies of knowledge acquisition tools: Method-
ology and lessons learned,” inKnowledge Acquisition Workshop, 1999.

[85] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. M̈uller, “Programmable reverse engi-
neering,”Software Engineering and Knowledge Engineering, vol. 4, no. 4, pp. 501–
520, December 1994.

[86] M. Travers, “A visual representation for knowledge structures,” in2nd ACM Conf. on
Hypertext. Pittsburgh PA: ACM, 1989, pp. 147–158.

[87] M. Uschold and R. Jasper, “A framework for understanding and classifying ontol-
ogy applications,” inIJCAI-99 Workshop on Ontologies and Problem-Solving Meth-
ods (KRR5), V. Benjamins, B. Chandrasekaran, A. Gomez-Perez, N. Guarino, and
M. Uschold, Eds., Stockholm, Sweden, 1999.

[88] A. Walenstein, “Cognitive support in software engineering tools: A distributed cog-
nition framework,” Ph.D., Computer Science Department, Simon Fraser University,
2002.

http://www.inf.unibz.it/~franconi/teaching/1999/3411/logic-glossary/
http://www.inf.unibz.it/~franconi/teaching/1999/3411/logic-glossary/

Appendix A – Body of email sent
requesting evaluation
As you are aware, our lab has developed a visualization plug-in for Protéǵe known as

Jambalaya. While the tool was initially released some two years ago, we continue to seek

ways to improve the usability and utility of our tool.

Following interviews, background research, and user interviews, we conjecture that one

of these improvements will be to develop a way for users to customize the tool using an

included Prot́eǵe ontology. This ontology, which we call the Customizable Visualization

Framework, or CVF, defines layouts, tools, and buttons to be used with your project. It

makes use of scriptable interaction to tailor the user experience to your domain and your

users.

In order to determine the validity of the idea of domain experts providing customiza-

tions, I would like to ask you to perform a brief evaluation on this early prototype of the

CVF. This evaluation should take a half hour (or less) of your time and will require fol-

lowing the steps below, examining the resulting customized visualizations, and emailing

results back to the investigator by December 12.

1. Ensure you have Protéǵe 2, build 111 or greater, and Java 1.4.2 or higher.

2. Download the latest Jambalaya installation athttp://www.cs.uvic.ca/˜nernst/

docs/cvf-files.zip . Unzip the files into the (Protéǵe home)/plugins direc-

tory. You should overwrite any files you are asked about (e.g. older jambalaya ver-

sions). You should now see, inside the plugins directory, the relevant .jar files, the

’cvf’ folder (representing the customization ontology files), and a ’scripts’ directory.

When including the CVF files, they will be in (Protéǵe home)/plugins/cvf.

3. Follow the instructions athttp://chiselog.chisel.cs.uvic.ca/cvf/

quickstart to explore ways the tool allows one to customize Jambalaya to the

domain.

4. As a guide for what customizations to add for (3), try the following tasks:

http://www.cs.uvic.ca/~nernst/docs/cvf-files.zip
http://www.cs.uvic.ca/~nernst/docs/cvf-files.zip
http://chiselog.chisel.cs.uvic.ca/cvf/quickstart
http://chiselog.chisel.cs.uvic.ca/cvf/quickstart

Appendix A 97

(a) create a new end-user instance

(b) allow the user to start with a Nested Layout, using ”– :DIRECT-SUBCLASSES

and :DIRECT-INSTANCES –” as the default nesting relation.

(c) Select some other slots from the domain as ”Display Slots”.

(d) Add two buttons for the user with some of the provided script instances at-

tached.

(e) Specify a set of other options to use for display, such as a set of tools and

layouts.

(f) Switch to the Jambalaya tab to see the customizations in effect.

5. You can tell if this worked by noticing the addition of the custom buttons on the far

right. The CVF also writes to the console which user instance it is using.

Following your use, I would ask you to evaluate this approach to making visualization

tools more useful, using the following criteria. Please reply to this email with your answers,

on or before Friday, December 12th, if possible.

1. Does the customization mechanism meet your expected difficulty level for something

of this nature?

2. Does the customization appear to make Jambalaya easier to use? You may want to

compare the un-customized version with the new version.

3. What other customizations do you consider important to reduce barriers to using

Jambalaya in your domain?

4. What are the biggest barriers, in your mind, to adopting Jambalaya (or other visual-

ization tools) for your domain?

5. Are there other ways to accomplish the goal of increasing the usefulness of generic

visualization approaches this methodology may not have brought up?

Keep in mind that the tool is a proof-of-concept model, being used to gather require-

ments for this approach. We realize that some of the interface features in the tool need

work.

Appendix A 98

Thanks for your consideration. I will release the findings of this survey in my Master’s

thesis; if you would like a copy of these results, please let me know, and I will gladly share

it with you. If you know of other users who would be interested in this, please forward this

email to them as well.

VITA

Surname: Ernst Given Names: Neil Alexander

Place of Birth: Victoria, British Columbia, CanadaDate of Birth:

Educational Institutions Attended

University of Victoria 1995 to 2001

Degrees Awarded

B.Sc. University of Victoria 2001

Honors and Awards

NSERC PGS B 2001-2003
Provost’s Award for Academic Excellence in Athletics 2002

Conference Publications

1. N. A. Ernst, M.-A. D. Storey, P. Allen, and M. A. Musen, Addressing cognitive issues
in knowledge engineering with Jambalaya, presented atWorkshop on Visualization
in Knowledge Engineering at KCAP 03, Sanibel Island, FL, 2003.

2. N. A. Ernst, Adoption-Centric Knowledge Engineering, presented atWorkshop on
Adoption-Centric Software Engineering at Int. Conf. on Software Engineering 2003,
Portland, OR, 2003.

3. M.-A. D. Storey, N. F. Noy, M. A. Musen, C. Best, R. W. Fergerson, N. Ernst, Jambal-
aya: an interactive environment for exploring ontologies, demonstration and poster at
International Conference on Intelligent User Interfaces, San Francisco, USA, 2002.

4. M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F.
Noy, Jambalaya: Interactive visualization to enhance ontology authoring and knowl-
edge acquisition in Protéǵe, presented atWorkshop on Interactive Tools for Knowl-
edge Capture, K-CAP-2001, Victoria, B.C. Canada, 2001.

Work Submitted for Publication

1. N.A. Ernst, M.-A. Storey, P. Allen, Cognitive Support for Ontology Modeling, sub-
mitted toInt. Journal of Human-Computer Studies, October 15, 2003.

UNIVERSITY OF VICTORIA PARTIAL COPYRIGHT LICENSE

I hereby grant the right to lend my thesis to users of the University of Victoria Library, and
to make single copies only for such users or in response to a request from the Library of any
other university, or similar institution, on its behalf or for one of its users. I further agree
that permission for extensive copying of this thesis for scholarly purposes may be granted
by me or a member of the University designated by me. It is understood that copying or
publication of this thesis for financial gain by the University of Victoria shall not be allowed
without my written permission.

Title of Thesis:

Towards Cognitive Support in Knowledge Engineering: An Adoption-Centred Customiza-
tion Framework for Visual Interfaces

Author:
NEIL A. ERNST
February 11, 2004

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgement
	Dedication
	Introduction
	 Knowledge engineering
	 The growth of intelligent systems
	 Cognitive support enhances knowledge engineering tools
	 Software customization: a possible solution?
	 Outline

	Background
	 Knowledge engineering
	 Knowledge representation and ontologies
	 Ontologies

	 The Semantic Web initiative
	 Building the semantic web

	 Graphical knowledge engineering
	 Protégé
	 More recent tools
	 IsaViz
	 Ontorama
	 Ontobroker/Kaon

	 Advanced visual interfaces in knowledge engineering

	 Adoption and innovation diffusion
	 Customization and domain models
	 Who is involved in the customization process?
	 Customization approaches
	 Model-driven architectures
	 Script-based environments

	 Chapter summary

	Cognitive support for knowledge engineering
	 Determining where cognitive support can help
	 Impetus for the research
	 Requirements gathering
	 User survey
	 Contextual inquiries

	 Background review

	 Knowledge engineering tasks requiring cognitive support
	 Summary

	 Approaches to cognitive support
	 Protégé core
	 Instance Tree widget
	 Ontoviz
	 TGVizTab
	 Jambalaya
	 Summary

	 Evaluating cognitive support using design goals
	 Trade-offs in the design process
	 Five important design goals
	 Usability
	 Learnability
	 Expressivity
	 Scalability and responsiveness
	 Customizability and extensibility

	 Summary

	Implementing and evaluating customization support in Jambalaya
	 Modeling Jambalaya
	 Customization in Jambalaya
	 Step 1. Outline the domain and scope of the ontology
	 Step 2. Consider other ontologies
	 Step 3. Enumerate important terms in the ontology
	 Step 4. Define the classes and the class hierarchy
	 Actions
	 Layouts
	 Scripts
	 View Elements
	 Interface Elements
	 Not included or future work
	 User concepts

	 Step 5. Define class properties
	 The CVF ontology: summary

	 Implementation
	 Creating the ontology
	 Integration with Jambalaya

	 Interacting with the CVF
	 Results of the customization
	 Validating the Prototype and Approach
	 Selection of validation technique
	 Validation technique: implementation report
	 Validation technique: experience report
	 Initial contact and questionnaire
	 Pilot User
	 User 1
	 User 2
	 User 3
	 Discussion and analysis

	 Summary

	Conclusions
	 The use of customization
	 Enabling customization vs. improving usability
	 Why knowledge engineering should care about adoption
	 Cognitive support needs consideration
	 Contributions
	 Future research directions
	 Critical assessment of the research

	Bibliography
	Appendix Body of email sent requesting evaluation

